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1
0:M—NCR  E(0)= [ ldof
2/m
(AQ)(x) L To)N

@ Let's choose N = S? C RS hereafter:

A9 —(9-A@)p=0

@ ¢: M — S? (M=compact Riemann surface)
E(p) > 4mn, equality <= ¢ holomorphic

(Belavin-Polyakov-Liechnerowicz)
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Domain Lorentzian (E(¢®) now S(@)).
Let’s choose (M,n) = (R x &, df? — g5)

sto)= [[at{ [loue - [ looP}

(Oo)(t,x) L To(tx)N for all (t,x) e M
where (1 =07 — Ay.
@ Obviously, static wave maps are harmonic maps ¥ — N

e dimX = 1, wave map equation is an integrable system

@ dimX > 3, nonintegrable but well understood analytically. Good
model of blow-up.
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@ dimX = 2, most interesting (and hardest) case for nonlinear
analysts. Blow-up problem very hard (Rodnianski and Sterbenz).

@ Also most interesting to (my sort of) theoretical physicists:
Have large families of static solutions

M,, = hol,(Z, S?)

which saturate a topological energy bound, and satisfy a
“Bogomolnyi” equation

Oy = QX Px

Topological “solitons” (cf monopoles, vortices, instantons. . .)
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Geodesic approximation (Ward, after Manton)

1
@ Wave map flow conserves Eoa = 5/ lo:|2+ E(o(t))
b

@ Cauchy problem: ¢(0) € My, ¢:(0) € Ty(q)Mp, small

@ Eioa(t) = 4mn+ small for all time: expect ¢(t) remains close
(e.g. in H' norm) to M,, for all time.

@ Consider much simpler constrained variational problem for S,
where y(t) € M, for all t:

1
Slru, = [ a5 [ Ivi2—amn}
pu
y(t) follows a geodesic in (M, )

X, Y):/X-Y, X,Y € TM, Cy TS
>

@ Conjecture: y(t) with initial data y(0) = @(0), y;(0) = ¢(0) is
a “good approximation” to wave map ¢(t)
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Precise conjecture

Consider the following one-parameter family of Cauchy problems for
the wave map flow R x ¥ — S2:

0(0)=¢o,  ©:(0) = eo;

where @ € Mp,, 91 € Ty,M, and € > 0.
There exist T > 0 and €, > 0 (depending on (o, ®+)) such that, for all
€ € (0,&,], this Cauchy problem has a unique solution for t € [0, T /€].
Furthermore, the time re-scaled solution

0 [0, T]xZ — 8%, 0(1,%) = 0(1/¢,X)
converges uniformly in C° norm to y : [0, T] x ¥ — S?, the geodesic
in M, with the same initial data.

@ Loosely: the geodesic approximation “works” for times of order
1 /e when the initial velocities are of order €

@ Can’t do much better: (M,,Yy) incomplete (Sadun, JMS)!
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Stuart’s method

We'll sketch the proof in the case ¥ = T2. Ingredients:

@ Wave map eqn for ¢ < coupled ODE/PDE system for
®=y+e?Y

@ Short time existence and uniqueness theorem for this system (in
a suitable Sobolev space)

© Coercivity of the Hessian (and “higher” Hessian)

@ Energy estimates for Y(t)

@ A priori bound
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The moduli space

@ Moduli space (stereographic coord on S?)

0(2—31)‘“0(2—8/7) Yai=Yb,
v(z) _lo(z—b1)"'(5(2_bn)’ {ai}n{bi} =0

dim¢ M, =2n
@ Choose and fix initial data @g € Mp,, @1 € Tp,Mp.

@ Choose and fix real local coords g : R*" > U — M,
Denote by y(q) the h-map corresponding to g.
Convenient to demand that @y = y(0) and U = R*".
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Sobolev spaces

@ Sobolev spaces:

#* = {u:¥ — R|uand all partial derivs up to order k are in L}
g = [+ ¥ [ @y
2 1<la<k’ >
HY = {Y:Z-R3| VY, Ye, YK
IVIE = IYalE 4 [allE + 1 alIE
Note H® = L2.

@ Fact: 7" is a Banach algebra for k > 2, that is,

u,ve X = uve ", and lluv||x < c|lullk]|v||«
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Projection to the moduli space

@ Wave map equation

Qtt — Qxx — Qyy + (|(Pt|2 - ‘(PX|2 - ‘(Py‘Z)(P =0

@ Slow time T = &t (book-keeping device)
@ Decompose 0(t) = y(q(t)) +€2Y(t).
e Section:map Z: ¥ — RR®
e Tangent section: Z: ¥ — R3 s.t. Z-y = 0 everywhere

Y is not a tangent section (but it’s close):

1
WE=lof =1 = y-v=—ZeYf

@ Choose g so that y(q) (locally) minimizes || Y||o:

<Y,Z> =0, VZ e T\p(q)Mn‘
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PDE for

Yn—i—J\VY:k—FSj

where
Y = DY = (P Ny P)Y =20 Yty V)
k = _W‘C‘E_‘WTFW
io= =2y Yoy —e(| Vi P = 1Y Py

—e(lye® — 29y Yo =2y, - V) ) Y} — 262 (ye - Y)Y
(VP -V = P)Y

@ We'll need to bound ||j||o, so work with Y € H3, Y; € H?
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The (improved) Jacobi operator

@ Fact: Jy, acting on tangent sections is the Jacobi operator for

h-map y

Hessy(Y,Y) = (Y,dY)

Self-adjoint elliptic operator on Y~ ' TS?, ToM, = ker Ji,
@ Annoying fact: J not self-adjoint on general sections
Self-adjointness of J is crucial for Stuart’s method

AY =
Ay =

—AY — (|wx[?+ [wy P) Y+ AY
—2(Wx- Yty - Vy)v
2{(v-YV)Ay+ (¥ Y)wx + (v Yy vy}

e Improved Jacobi operator Ly Y = Jiy Y +ATY
Clearly self-adjoint, still elliptic
Ly = Jy on tangent sections
Ly(oy) = —(Ao)y — 4(0u,yx + 0y, ) on normal sections
Hence ker Ly, = ker Jy & (W)
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The (improved) Jacobi operator

@ For Y satisfying pointwise constraint y- Y = — J€?| Y|?,

ATY = —{|YPAY+ Yy, +|Y[ow, }

@ So, replace J by L and j by

J=i+e{|YPAY+[YEy+ Yy, }

@ Doesn’t change analytic structure of error term

Yi+LY =k+¢f
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Evolution of

@ Recall L? orthogonality constraint

v, 2

,Tqi :0, i:1,2,...,4n

since a ; span ker Jy
@ Differentiate w.r.t. t twice

<Ytr,§u{> = O(g)

oy
39 =)

NG
<\|’maq> = O(g)

(=LY + k

Geodesic flow (with O(€) correction).
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Summary: the ODE/PDE system

YetlY = k+gf
G+ T(@pdas = ef(q, Y, Yi€)

Short time existence theorem
There exist €., T > 0, depending only on I', such that, for all € € (0, €,]
and any initial data

1Y (0)[15+ [ 2(0) 13+ a(0)[* + | (0) [ < T®
the system has a unique solution

(Y,q) € C°([0, T], H* o R*" N ---NnC3([0, T], H* & R*")

Furthermore, if the initial data are tangent to the L? orthogonality
constraint, and the pointwise constraint, the solution preserves these
constraints for all .

Proof: Picard’s method.
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Theorem (Haskins,JMS)

For all tangent sections L? orthogonal to ker Jy,
(Yo dyY) > c(w)l| Y]F.

The constant c(y) > 0 and depends continuously on .

e Define tangent projection P(Z) = Z — (v - Z2)y.
Then (a0 =y - 2),
(Z,LZ2) = (P(Z)+ay,JP(Z)+ L(owy))
(P(2).JP(2)) + [do|? > (P(2),JP(Z)).
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Coercivity of the Hessian(s)

@ If Y L2 kerd, sois P(Y), so above Theorem implies

(Y.1Y) = c(W)[[P(Y)IF = c(w)(I YIIF - €] Y]I2)

@ Similarly, can show that, if Y L ;> kerJ

(v, Lry) = c(w) {lIYl5—€(IYlIs+ 1 YII3) }

@ Also need Garding inequality (standard elliptic estimate)

LY I > eCu){II Y[z — Y15}

(True for any 2nd order elliptic operator)
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Energy estimates

@ Take a solution of the ODE/PDE system, and consider the

quantity

1 1
Qi(t) = §HYtHg+§<Y;LY>

@ This is “quasi-conserved”:

aa,
at

Qi (1)

IN

(Y, =LY + k+¢€f) + (Y3, LY) +€(Y, L Y)

%(Y,kH—s{—(Y,kT)nL(Y,,j’>+(Y,LTY>}

¢+ c(q)(| gl + )Y (£)lo

t
+ [ e((al. el el el Yo [ i)



Energy estimates

@ Higher energy,

Q(t) = (LY)J\%—#—%(LY,LLY)

iy
2
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@ Higher energy,

1
(LY )3+ Ly, Ly)

Qu(t) = |

@ LY satisfies a PDE with same analytic structure. One finds
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Energy estimates

@ Higher energy,

1
(LY )3+ Ly, Ly)

Qu(t) = |

@ LY satisfies a PDE with same analytic structure. One finds

Q(t) < cte(@)(lgel+Ia) YD)l

t
+e/0 o(lal, 1G: ) |geels [ gesel | Yl [ VilL2)

@ Key point: dominant term in growth of quadratic form Q. (which
controls || Y||3) is linear in || Y3
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A priori bound

Can repeatedly apply short time existence theorem, whilever
lg|+ |gz| + || Y|z + || Y¢||2 remains bounded. In this way, produce
maximally extended solution with Y(0) = Y;(0) = 0.

o Let g(t) = qo(7) +€°q(t)

where go(T) solves exact geodesic flow.
@ There exists T, > 0 such that |go(t)| < 1 for all T € [0, T.].

® M(t) = max {lg(s)| +[a(s)| + 1Y (s)llz + | i(s)l2}

@ Whilever solution exists and t < T/,

]
|G|
||

|G|
|q’CT‘C‘

(VAN VANRN VANRE VARSI VAN

1+€%¢(M)

ec(M)

cte|g <c+eM
c+ec(M)

c(M)



A priori bound

@ By coercivity, Garding, energy estimates:

1Y (OIZ+ YOI < clla){ILY:liz +1 Vel
+(LY,LLY) +€%¢(|| Y]|3)}



A priori bound

@ By coercivity, Garding, energy estimates:
IOz +I1YOIF < cllaD{IILvels + 11 Yel3

B +(LY,LLY) +€%c(]| Y]|3)}
c(142c(M)){Qy(t) + Qu(t) +2c(M)}

IN



A priori bound

@ By coercivity, Garding, energy estimates:

IVi(@OIE+ 1Y (D5

IN

c(laD{IILYili5+ 1 Yellg

+(LY,LLY) +€%c(]| Y]|3)}
c(142c(M)){Qy(t) + Qu(t) +2c(M)}
(c+e%c(M){c+ (c+ec(M))]Y(t)lls

+ /O ' o(M(s))ds}

VARVA



A priori bound

@ By coercivity, Garding, energy estimates:
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A priori bound

@ By coercivity, Garding, energy estimates:

IVi(@OIE+ 1Y (D5

IN

c(laD{IILYell5+ 1| Yell5

+(LY,LLY) +€%c(]| Y]|3)}
c(142c(M)){Qy(t) + Qu(t) +2c(M)}
(c+€%c(M)){c+ (c+ec(M))[|Y(1)[|s
+ /O o(M(s))ds)

-+ cM(t)2 +etc(M(t))

VARVA

IN

@ Hence, whilever solution exists (and t < T, /g),

M(t) < c+ec(M(t)) + cM(1)? +ete(M(t))
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A priori bound

=

M(t) < c+ec(M(t))+ cM(t)z +etc(M(t))

@ Choose M, > 0 large, and for each € > 0 let ; be the first time

when M = M,.
Claim there exists €, > 0 such that €f; is bounded away from 0 on
(0,&.].

If not, there exists a sequence € — 0 so that e — 0, whence

1
M, < c+ cM?

a contradiction for M, sufficiently large.
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A priori bound

“Precise conjecture” follows:
@ There exists T, = inf{et; : € € (0,€.]} > 0 such that, as € — 0,

q(t) — qo(t) uniformly on [0, T..]

@ ||Y|s remains bounded for t € [0, .. /€|, and
[Ylleo <cllYlz < el Yls,

so @¢(T) converges uniformly on [0, T...] to W(qo(7))
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Concluding remarks

@ Proved for ¥ = T2, but argument should immediately generalize
to any compact RS

@ Generalizing target space is much harder. Static model has right
properties when N=compact Kahler, but what’s analogue of

0(t) = y(t) +2Y(t)?
@ We first tried (even for N = S?1)

O(1) = expy(r) € V(1)

but this doesn’t work (j has Y, terms, fatal for short time
existence result and higher energy estimate)

@ Presumably extrinsic set-up can be used. Hideous.



