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Two component GL theory

Two charged scalar fields ψ1, ψ2

Two component superconductors: condensates of electron
Cooper pairs in two different pairing states
Liquid metallic hydrogen: electrons and protons

Electromagnetic gauge field A

Assume translation invariance in z direction

E =
1

2

∫
R2

|Dψ1|2 + |Dψ2|2 + B2 + 2V (ψ1, ψ2)

where Dψ = (∇− iA)ψ, B = ∂1A2 − ∂2A1

Gauge invariance: E invariant under

ψa 7→ e iχψa, A 7→ A +∇χ

⇒ V (|ψ1|, |ψ2|, θ) where θ = arg(ψ1)− arg(ψ2).
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Two component GL theory

Interesting examples

V = V0 + α1|ψ1|2 +
β1

2
|ψ1|4 + α2|ψ2|2 +

β2

2
|ψ2|4

(α1, α2 < 0)

V = above− η

2
(ψ1ψ2 − ψ1ψ2)

etc

Want V : C2 → R to have an unstable critical point at (0, 0)
and a global minimum at ψ1, ψ2 6= 0. WLOG, can assume
global min occurs at ψ1 = u1 > 0, ψ2 = u2 > 0 and has
V (u1, u2) = 0.

Model supports vortex solutions

ψa = σa(r)e iθ, A =
a(r)

r
(− sin θ, cos θ)

with real profile functions σ1, σ2, a interpolating between 0
(at r = 0) and u1, u2, 1 respectively (as r →∞).
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Two component GL theory
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Two component GL theory

E =
1

2

∫
R2

|Dψ1|2 + |Dψ2|2 + B2 + 2V (ψ1, ψ2)

Flux quantization: ψa(r , θ) ∼ uae
iχ(θ), A ∼ ∇χ as r →∞

Stokes’s Theorem ⇒

Φ =

∫
R2

B =

∫
S1
∞

A = 2πn

where n = winding number of ψ1 (and ψ2).

Vortex has n = 1, hence Φ = 2π. Exponentially spatially
localized (flux tube).

Intervortex forces?
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The abelian Higgs model

Single component GL theory

E =

∫
R2

1

2
|Dψ|2 +

1

2
B2 − α|ψ|2 +

β

2
|ψ|4

Static case of abelian Higgs model in R(2,1)

S =

∫
R(2,1)

1

2
DµψDµψ − 1

4
FµνF

µν − µ2

8
(1− |ψ|2)2

Relativistic field theory in 2 + 1 dimensions, Dµ = ∂µ + iAµ,
µ = 0, 1, 2, Fµν = ∂µAν − ∂νAµ (so B = F12).

Still has static vortices

ψ = σ(r)e iθ, (A0,A1,A2) =
a(r)

r
(0, sin θ,− cos θ)
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The abelian Higgs model

Topological solitons: smooth, spatially localized, finite energy
solutions of nonlinear relativistic field theory with particle-like
behaviour

Can Lorentz boost them
Have anti-vortices (winding n = −1)
Far from the vortex core the fields look like those induced in
a linear theory by a point source at the vortex centre
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Vortex asymptotics

Asymptotics: for µ ≤ 2,

σ(r) ∼ 1 +
q

2π
K0(µr)

a(r) ∼ 1− m

2π
rK ′0(r)

where K0 = modified Bessel function of the second kind, q, m
are unknown constants.

Note K0(r) ∼
√

π
2r e
−r



Linearized model

Idea: replicate far-field of vortex in linearized theory by
introducing appropriate point sources.

Which linear theory? Linearize AHM about the vacuum:
choose real gauge, ψ = 1 + ϕ,

L =
1

2
∂µψ∂

µϕ− µ2

2
ϕ2−1

4
FµνF

µν +
1

2
AµA

µ + κψ−jµA
µ

Klein-Gordon-Proca theory: ϕ scalar boson (Higgs) of mass
µ, Aµ vector boson (photon) of mass 1.

Asymptotic vortex fields induced by

κ = qδ(x) scalar monopole, charge q

j = −mk×∇δ(x) magnetic dipole of moment mk

Composite point source, “point vortex”
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Point vortices

At µ = 1, q = m. Not a coincidence!



Point vortex interactions

Deep principle (or leap of faith): since vortex is asymptotically
indistinguishable from a point particle carrying sources for a
linear theory, the interactions between vortices should be
well-approximated, at long range, by those between the
corresponding point particles.

The latter are easy to compute: linear field theory

Lint =

∫
R2

{κ(1)ψ(2) − jµ(1)A
(2)
µ } = Lψ + LA

Two point vortices at rest at y, z

Lψ =

∫
qδ(x− y)

q

2π
K0(µ|x− z|) d2x =

q2

2π
K0(µ|y − z|)

LA = · · · = −m2

2π
K0(|y − z|)
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Vortex interaction potential

Vint =
1

2π
[m2K0(s)− q2K0(µs)]

Reproduces familiar trichotomy:

µ < 1 attractive - type I
µ > 1 repulsive - type II
µ = 1 cancel, Vint = 0.

Cf constrained minimization:
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Back to two component model

Try the same trick

Think of TCGL model as static case of TCAHM
Think of vortices as topological solitons
Replicate vortex asymptotics with point sources in the
linearized model
Read off asymptotic interaction potential

New phenomenon:

In one-component case we had two length scales, set by mass
of Higgs, µ, and mass of photon, 1
In two component case, we have four, of which three are
relevant: two Higgs masses µ1, µ2 and the photon mass µA

Interesting regime: µ1 < µA < µ2

Can allow non-monotonic vortex interaction potential:
attractive at long range but repulsive at short range.
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Two-component abelian Higgs model

L =
1

2
Dµψ1D

µψ1 +
1

2
Dµψ2D

µψ2 −
1

4
FµνF

µν − V (ψ1, ψ2)

Linearize about A = 0, ψ1 = u1, ψ2 = u2 in real ψ1 gauge.

ψ1 = u1 + ϕ1, ψ2 = (u2 + ϕ2)e iϕ3

Vortex has ϕ3 ≡ 0, so can drop it

L =
1

2
∂µϕa∂

µϕa −
1

4
FµνF

µν +
1

2
(u2

1 + u2
2)AµA

µ− 1

2
ϕaHabϕb

where H is the Hessian matrix of V at the vacuum

Hab =
∂2V

∂|ψa||ψb|

∣∣∣∣
|ψ1|=u1,|ψ2|=u2
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Linearized model
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4
FµνF
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1

2
(u2

1 + u2
2)AµA

µ − 1

2
ϕaHabϕb

Aµ decouples. In general ϕ1, ϕ2 do not

Define eigenvectors v1, v2 of H , eigenvalues µ2
1, µ

2
2 > 0

Expand [
ϕ1

ϕ2

]
= χ1v1 + χ2v2

Defines mixed scalar modes χa which decouple

L =
1

2

2∑
a=1

(∂µχa∂
µχa − µ2

aχ
2
a)− 1

4
FµνF

µν +
1

2
µ2

AAµA
µ

where µA =
√

u2
1 + u2

2 = mass of the photon
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Linearized model

Point vortex carries magnetic dipole moment and two different
kinds of scalar monopole charge

Monopole charges induce scalar fields χ1, χ2, mixed fields
obtained from ϕ1, ϕ2 by rotating through mixing angle Θ,

where v1 =

[
cos Θ
sin Θ

]
.

Long range attraction ⇔ min{µ1, µ2} < µA

Naive expectation: if µ1 < µA < µ2 maybe magnetic repulsion
still dominates at short range?
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Numerics, basic case (Babaev, JMS)

V = α1|ψ1|2 +
β1

2
|ψ1|4 + α2|ψ2|2 +

β2

2
|ψ2|4

α1 < 0, α2 < 0

VeVs: ua =
√
|αa|/βa

Masses: µA =
√

u2
1 + u2

2 , µa = 2
√
|αa|



Type 1.5 superconductivity?

Imagine we have a superconductor described by previous
TCGL and we turn up an applied magnetic field H.

When H reaches Hc1 = E (one vortex)/2π it becomes
energetically favourable for magnetic flux to penetrate in a
vortex (like type II)

Increasing H, until we reach Hc2 = µ2
0 = max{2|α1|, 2|α2|},

more and more vortices penetrate (like type II)...

...but it’s energetically favourable for the vortices to clump
together at a fixed separation, rather than form a regular
lattice of increasing density (not like type II)

Predict clumps of flux penetration in a sea of Meissner state
(like type I)...

...but within each clump, flux will penetrate in a vortex lattice
of fixed unit cell size (not like type I)

We called it “semi-Meissner state”...
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Type 1.5 superconductivity?

...Moshchalkov et al found similar structure in MgB2

H = 5 Oe, Bitter decoration H = 10µT , SQUID microscopy

They called it “type 1.5 superconductivity”

Not universally accepted.



Interband couplings

Main criticism of our analysis: having no direct coupling
between condensates is very unrealistic (only interaction is via
em field).

In real superconductors, have
direct coupling through Josephson effect

VJos = −η1

2
(ψ1ψ2 + ψ1ψ2)

gradient-gradient coupling (except in ultra clean samples) due
to electron scattering off impurities

νRe(Dψ1 ·Dψ2)

Also, if we’re including terms up to order 4, why don’t we
include

VQuartic = η2|ψ1|2|ψ2|2?

Once condensates are coupled, expect this to equalize their
decay rates as r →∞. Maybe this eliminates the type 1.5
regime altogether?
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Interband couplings

Riposte: direct coupling terms are forbidden in many
interesting systems (e.g. liquid metallic hydrogen), so our
original analysis is still relevant to such systems.

Better riposte: the length scales of interest are inverse masses
of the (now mixed) normal modes not the condensates
themselves. Can still have splitting µ1 < µA < µ2

Even better riposte: large scale numerical simulations of the
model including all these extra terms show that there are big
regions of parameter space where vortex interaction is
non-monotonic [Babaev, Carlstrom, JMS].
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Interband couplings

Doesn’t answer question of whether MgB2 supports type 1.5
superconductivity (have no idea what the interband coupling
parameters are). But it does show that type 1.5
superconductivity is possible in principle.



Summary

In two component superconductors there can be
thermodynamically stable vortices with attractive interaction
at long range.

This behaviour is robust and survives all kinds of interband
coupling.

Modes mediating long range attraction are mixed.

Leads to appearance of ”semi-Meissner” state.

Can apply to two-band materials, metallic hydrogen, maybe
even neutron stars...
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