Wave-map flow on a compact Riemann surface

Martin Speight University of Leeds, UK

Wardfest, 7 September 2011

Wave-map flow

$$\Box \phi - (\phi \cdot \Box \phi) \phi = 0$$

$$\Box \phi + (|\phi_t|^2 - |d\phi|^2) \phi = 0$$

semilinear wave equation.

• Henceforth $\dim_{\mathbb{R}} \Sigma = 2$

Static solutions

• $\phi: \Sigma \to N$ static wave map \Leftrightarrow harmonic, i.e. critical pt of

$$E(\phi) = \frac{1}{2} \int_{\Sigma} |\mathrm{d}\phi|^2$$

• Holomorphic maps $\Sigma \to S^2$ minimize E in their htpy class

$$M_n = Hol_n(\Sigma, S^2) = \left\{ egin{array}{ll} \operatorname{Rat}_n^* & \Sigma = \mathbb{C} & \dim_{\mathbb{C}} = 2n \\ \operatorname{Rat}_n & \Sigma = S^2 & \dim_{\mathbb{C}} = 2n+1 \\ ??? & \Sigma = \Sigma_g & \dim_{\mathbb{C}} = 2n+1-g \end{array}
ight.$$

Noncompact, lump bubbling

The conjecture (Ward, after Manton)

- For $(\phi(0), \phi_t(0)) \in T_{\phi(0)}M_n$, $|\phi_t(0)|$ small, wave map $\phi(t)$ is well approximated by the **geodesic** in M_n (with respect to the L^2 metric).
- Motivates study of geodesic flow in M_n (Ward, Leese, JMS, Sadun, Cova, Baptista, McGlade, Romão)

Theorem (JMS)

Let Σ be a compact Riemann surface of genus g and $n \geq g$. For fixed $\phi_0 \in M_n$ and $\phi_1 \in \mathcal{T}_{\phi_0} M_n$ consider the one parameter family of wave-map IVPs

$$\varphi(0) = \varphi_0, \qquad \varphi_t(0) = \varepsilon \varphi_1,$$

parametrized by $\varepsilon > 0$. There exist constants $\tau_* > 0$ and $\varepsilon_* > 0$ such that for all $\varepsilon \in (0, \varepsilon_*]$, the problem has a unique solution for $t \in [0, \tau_*/\varepsilon]$. Furthermore, the time re-scaled solution

$$\phi_{\varepsilon}: [0, \tau_*] \times \Sigma \to S^2, \qquad \phi_{\varepsilon}(\tau, x) = \phi(\tau/\varepsilon, x)$$

converges uniformly in C^1 to $\psi: [0, \tau_*] \times \Sigma \to S^2$, the geodesic in M_n with the same initial data, as $\varepsilon \to 0$.

$$\delta_{\epsilon} = \sup_{(\tau,x) \in [0,\tau_*] \times \Sigma} \{|\phi_{\epsilon} - \psi|, |d\phi_{\epsilon} - d\psi|, |\dot{\phi}_{\epsilon} - \dot{\psi}|\} \rightarrow 0$$

Proof strategy

- Proof uses Stuart's projection/energy estimate strategy
- He dealt with vortices on $\mathbb C$ and monopoles on $\mathbb R^3$
- What's easier here: ∑ is compact, no gauge symmetry
- What's harder here: M_n is (badly) noncompact, target S² nonlinear

Projection to M_n

- Slow time $\tau = \varepsilon t$, $= d/d\tau$
- Given curve $\psi(\tau) \in M_n$ and wave-map φ , define error section Y

$$\varphi = \psi + \varepsilon^2 Y$$

φ wave-map iff

$$Y_{tt} + J_{\psi(\tau)}Y = k + \varepsilon j$$

$$k = -(\psi_{\tau\tau} + |\psi_{\tau}|^{2}\psi)$$

$$j = polynomial(\varepsilon, \psi, d\psi, \psi_{\tau}, Y, dY, Y_{t})$$

$$J_{\psi}Y = -\Delta Y - |d\psi|^{2}Y - 2(d\psi, dY)\psi$$

- $J_{\psi} =$ Jacobi operator for harmonic map ψ
 - Self-adjoint operator on tangent sections $(\psi \cdot Y = 0)$
 - Elliptic
 - $\ker J_{\Psi} = T_{\Psi} M_n$
 - Coercive: for all tangent sections \perp_{L^2} to ker J_{Ψ} ,

$$\langle Y, J_{\Psi}Y \rangle_{L^2} \ge c(\Psi) \|Y\|_{H^1}^2$$
 what's H^1 ?

Sobolev space interlude

- $\bullet \ H^k = \{f : \Sigma \to \mathbb{R} : f, \nabla f, \dots, \nabla^k f \in L^2\}$
- Banach space wrt $||f||_k^2 = ||f||^2 + ||\nabla f||^2 + \dots + ||\nabla^k f||^2$
- Banach **algebra** if $k \ge 2$: if $f, g \in H^k$ then $fg \in H^k$ and $\|fg\|_k \le C\|f\|_k\|g\|_k$
- $||f||_{C^0} \le C||f||_2$

back to the plot

Projection to M_n

Problem: Y is not a tangent section,

$$\psi \cdot Y = -\frac{1}{2} \varepsilon^2 |Y|^2 \quad (*)$$

• J_{ψ} is **not** self-adjoint on $\psi^{-1} \mathbb{R}^3$

$$J_{\Psi}Y = -\Delta Y - |\mathrm{d}\Psi|^2 Y + A_{\Psi}Y$$

- Improved Jacobi operator: $L_{\psi} = J_{\psi} + A_{\psi}^{\dagger}$
 - Self-adjoint operator on $\psi^{-1}\mathbb{R}^3$
 - Elliptic
 - $L_{\Psi} = J_{\Psi}$ on tangent sections
 - Nearly coercive: for all (*)-sections \perp_{L^2} to ker J_{Ψ}

$$\langle Y, L_{\psi} Y \rangle_{L^2} \geq c(\psi) \|Y\|_1^2 - \epsilon^2 \widetilde{c}(\psi) \|Y\|_2^3$$

Projection to M_n

On (*) sections,

$$A_{\psi}^{\dagger} Y = \epsilon^{2} \{ |Y|^{2} \Delta \psi + (\mathrm{d}|Y|^{2}, \mathrm{d}\psi) \} =: \epsilon \hat{j}$$

so ϕ wave-map iff

$$Y_{tt} + L_{\psi}Y = k + \varepsilon j', \qquad j' := j + \hat{j}$$

• Dynamics for $\psi(\tau)$: demand $Y(t) \perp_{L^2}$ to ker $J_{\psi(\tau)}$

$$\langle Y, \frac{\partial \psi}{\partial q^{\mu}} \rangle = 0$$

$$\langle Y_{tt}, \frac{\partial \psi}{\partial q^{\mu}} \rangle = O(\varepsilon)$$

$$\langle -L_{\psi}Y + k, \frac{\partial \psi}{\partial q^{\mu}} \rangle = O(\varepsilon)$$

Step 1: local existence

$$\ddot{q} + G(q)\dot{q}\dot{q} = \varepsilon h(q, \dot{q}, Y, dY, Y_t)$$

$$Y_{tt} + L_q Y = k + \varepsilon j'(q, \dot{q}, Y, dY, Y_t) \qquad (CS)$$

- Given initial data $q(0) \in K$, $\dot{q}(0)$, Y(0), $Y_t(0)$ with $|\dot{q}(0)| + ||Y(0)||_3 + ||Y_t(0)||_2 \le \Gamma$, system (*CS*) has a unique solution for $t \in [0, T(\Gamma)]$. The solution remains in the ball of radius $c\Gamma$ in $K \times \mathbb{R}^k \times H^3 \times H^2$. If the initial data are tangent to the (*) and \bot_{t^2} constraints, the solution preserves them.
- Prove using Picard's method.
- Can apply iteratively: solution exists whilever q remains in K and \dot{q} , $||Y||_3$, $||Y_t||_2$ remain bounded.

Step 2: energy estimates

$$E_{1}(t) = \frac{1}{2} \|Y_{t}\|^{2} + \frac{1}{2} \langle Y, LY \rangle$$

$$\frac{dE_{1}}{dt} = \langle Y_{t}, -LY + k + \varepsilon j' \rangle + \langle Y_{t}, LY \rangle + \frac{1}{2} \varepsilon \langle Y, L_{\tau} Y \rangle$$

$$= \langle Y_{t}, k \rangle + \varepsilon \{\cdots \}$$

$$= \frac{d}{dt} \langle Y, k \rangle + \varepsilon \{\cdots \}$$

$$E_{1}(t) \leq C + C(|\ddot{q}| + |\dot{q}|^{2}) \|Y(t)\| + \varepsilon \int_{0}^{t} c(|\dot{q}|, |\ddot{q}|, |\ddot{q}|, \|Y\|_{3}, \|Y_{t}\|_{2})$$

Apply same argument to LY

$$E_{2}(t) = \frac{1}{2} \|(LY)_{t}\|^{2} + \frac{1}{2} \langle LY, LLY \rangle$$

$$E_{2}(t) \leq C + C(|\ddot{q}| + |\dot{q}|^{2}) \|Y(t)\|_{2} + \varepsilon \int_{0}^{t} c(|\dot{q}|, |\ddot{q}|, |\ddot{q}|, \|Y\|_{3}, \|Y_{t}\|_{2})$$

Step 3: a priori bound

• Define deviation \widetilde{q} of $q(\tau)$ from geodesic q_*

$$q = q_* + \varepsilon^2 \widetilde{q}$$

Measure total error by

$$M(s) = \max_{0 \le t \le s} \{ \varepsilon^2 |\widetilde{q}(t)|^2 + |\widetilde{q}_t(t)|^2 + |\widetilde{q}_{tt}(t)|^2 + ||Y(t)||_3^2 + ||Y_t(t)||_2^2 \}$$

Solution exists whilever M(t) remains bounded

• q solves geodesic eqn $+O(\varepsilon) \Rightarrow$

$$\begin{aligned} |\widetilde{q}_{tt}| & \leq & \varepsilon c(M(t)) \\ \Rightarrow & |\widetilde{q}_{t}| & \leq & \varepsilon t c(M(t)) & (\widetilde{q}_{t}(0) = 0) \\ \Rightarrow & |\varepsilon \widetilde{q}| & \leq & \varepsilon^{2} t^{2} c(M(t)) & (\widetilde{q}(0) = 0) \end{aligned}$$

Step 3: a priori bound

$$\begin{split} \|Y\|_3^2 + \|Y_t\|_2^2 & \leq E_1(t) + E_2(t) + \varepsilon^2 c(M) \quad \text{(coercivity)} \\ & \leq C + CM^{\frac{1}{2}} + \varepsilon t c(M) + \varepsilon^2 c(M) \quad \text{(energy estimate)} \\ \Rightarrow M(t) & \leq C + CM(t)^{\frac{1}{2}} + (\varepsilon t + \varepsilon^2 t^2 + \varepsilon^2) c(M(t)) \end{split}$$

- Choose M_* large, define $t_{\varepsilon} = \sup\{t : M(t) \leq M_*\}$
- Claim $\exists \varepsilon_* > 0$ s.t. $\varepsilon t_{\varepsilon}$ is bded away from 0 on $(0, \varepsilon_*]$
- Assume not: \exists sequence $\varepsilon \to 0$ s.t. $\varepsilon t_{\varepsilon} \to 0$. Then

$$M_* \leq C + CM_*^{\frac{1}{2}}$$

• *M* remains bded for time of order $1/\epsilon$. Theorem follows.

Concluding remarks

- Loosely: the geodesic approximation "works" for times of order $1/\epsilon$ when the initial velocities are of order ϵ
- Can't do much better: M_n incomplete!
- τ_* depends on how close φ_0 is to ∂M_n .
- Geodesic approx. certainly fails very close to blow-up (Rodnianski and Sterbenz)