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Wave-map flow

0 0:RxY — NCRK,
(Oo)(t,x) L To(txyN  forall (t,x)eM

where [0 =97 — Ay
o N=S2CR8
O¢—(¢-O9)e =
Do+ (| — [dof)e =

semilinear wave equation.
@ Henceforth dimgp > =2



Static solutions

@ ¢ :X — N static wave map < harmonic, i.e. critical pt of

E(¢) = ;/;Idcpl2

@ Holomorphic maps ¥ — S? minimize E in their htpy class

Rat, X=C dimc=2n
M, = Hol,(X,8%) ={ Rat, ¥ =8> dimc=2n+1
77?7 Y =%, dmc=2n+1—-g

@ Noncompact, lump bubbling



The conjecture (Ward, after Manton)

4mnl

@ For (9(0),9:(0)) € Ty(0)Mn, |9:(0)| small, wave map ¢(t) is well
approximated by the geodesic in M, (with respect to the L?
metric).

@ Motivates study of geodesic flow in M, (Ward, Leese, JMS,
Sadun, Cova, Baptista, McGlade, Romao)




Theorem (JMS)

Let 3 be a compact Riemann surface of genus g and n > g.
For fixed @9 € M, and ¢4 € Ty,M, consider the one parameter family
of wave-map IVPs

¢(0) = @o, ¢:(0) = €94,

parametrized by € > 0.There exist constants T, > 0 and €, > 0 such
that for all € € (0, €,], the problem has a unique solution for
t € [0, /€].Furthermore, the time re-scaled solution

Qe [0, 7] XX — 82, @e(t,x) = 0(T/g, %)

converges uniformly in C' to v : [0,7.] x ¥ — S2, the geodesic in M,,
with the same initial data, as € — 0.

0= sup  {|Qc— V], |dos —dy],|¢: — |} — 0
(T,x)el0,T]xX



Proof strategy

@ Proof uses Stuart’s projection/energy estimate strategy
@ He dealt with vortices on C and monopoles on R®
@ What's easier here: X is compact, no gauge symmetry

@ What's harder here: M,, is (badly) noncompact, target S?
nonlinear



Projection to M,

@ Slow time t=¢t,'=d/dt
@ Given curve y(1) € M, and wave-map ¢, define error section Y

¢ =y+e?Y
@ ¢ wave-map iff

Yﬁ"‘J\V(T) Y = k+¢gf

k = _(‘l’rr+"l’t‘2‘lf)
j = po,ynomia/(87\p7 dW7 “r"h Y,dY, YI)
JyY = —AY—|dyPY —2(dy,dY)y

@ Jy, = Jacobi operator for harmonic map
e Self-adjoint operator on tangent sections (y - Y = 0)
o Elliptic

o kerdy = TyM,

e Coercive: for all tangent sections L2 to ker Jy,

(Y, dyY) 2 > c(w)]| Y124



Sobolev space interlude

o HK={f: ¥ —R: fVf... VkfeL?}

@ Banach space wrt ||f[|2 = ||f|| + ||[VF[|? + - + || V¥F||?

@ Banach algebra if k > 2:if f,g € H* then fg € H* and
Ifgllk < Cliflixllglix

o ||fllco < Clfl2



Projection to M,

@ Problem: Y is not a tangent section,

1
oy =— Y (x)

@ Jy is not self-adjoint on y~'R3

JyY =AY —[dyPY + Ay Y

@ Improved Jacobi operator: Ly = Ji + Ay,
Self-adjoint operator on ¢~ 'R®

o Elliptic

e Ly = Jy on tangent sections

o Nearly coercive: for all (*)-sections L2 to ker Jy,

(Y, Ly V)2 > c(w)|YIIF —%e(w)] Y12



Projection to M,

@ On () sections,
ALY = (| YA+ (d]Y[2,dy)} =
S0 @ wave-map iff
Ye+LyY=k+g/, ji=j+]

@ Dynamics for y(7): demand Y/(t) L ;2 to kerdy(x)

v

<Y, @)
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Step 1: local existence

Yi+LgY k+¢/(g,q,Y,dY,Y:)  (CS)

@ Given initial data g(0) € K, g(0), Y(0), Y:(0) with
1g(0)|+ [ Y(0)][3 + | Y¢(0)][2 < T, system (CS) has a unique
solution for t € [0, T(I")].The solution remains in the ball of radius
clin K x RK x H® x H2.If the initial data are tangent to the ()
and _L,2 constraints, the solution preserves them.

@ Prove using Picard’s method.

@ Can apply iteratively: solution exists whilever q remains in K and
q,||Y Yt||2 remain bounded.

3,



Step 2: energy estimates

1 1
Ei(t) = =|Y|?+=(Y,LY
() = SIVIP+ (v.Ly)
dE 1
= (LY rkre) (VL) + e(Y.LeY)
= (Yok)+e{--}
d
= —(Y,k)+ef---
S(Yok) el
.t 'l
Ei(t) < C+C(|q\+!c'7|2)HY(f)H+8/O c(lal,lal,1al, 1Y s, [ Yill2)

Apply same argument to LY
Ex(t) = —H(LY) 12+ LY ,LLY)

.t aea
Ex(t) C+C(lal+ Iqlz)H Y(f)|!2+€/0 c(lal. gl 1l [1Ylls, Il Yill2)

IN



Step 3: a priori bound

@ Define deviation g of g(t) from geodesic g.

q=q.+€q

@ Measure total error by

M(s) = max {€%[q(t)[*+q(t)* + [qu(O) >+ [ Y(OI5+ | Ve(1) I3}

0<t<s

Solution exists whilever M(t) remains bounded
@ g solves geodesic eqn +0(g) =

gl < ec(M(t))
= ol < ewc(M(t)) (q(0)=0)
= legl < €te(M(1))  (q(0)=0)



Step 3: a priori bound

< C+ CM%+£tc(M)+szc(M) (energy estimate)
= M) < C+CM(1)z+ (et+ €2 +€2)c(M(t))

IYIE+(IVilZ < Ei(t)+Ex(t)+€%c(M)  (coercivity)

@ Choose M., large, define t. = sup{t : M(t) < M.}
@ Claim Je, > 0 s.t. €t is bded away from 0 on (0, €]
@ Assume not: 3 sequence € — 0 s.t. €. — 0. Then

m<cromt

@ M remains bded for time of order 1/¢. Theorem follows.



Concluding remarks

@ Loosely: the geodesic approximation “works” for times of order
1 /e when the initial velocities are of order €

@ Can’'t do much better: M, incomplete!
@ T, depends on how close @ is to IM,.

@ Geodesic approx. certainly fails very close to blow-up
(Rodnianski and Sterbenz)



