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Moduli space

e M, = {solutions of (V1), (V2)}/gauge transformations
e Bradlow bound: [-(V2):

T 1
2 = ZiEl - gl
= “‘PH%2 = 7|X|-4mn=¢2>0
e Bradlow (1990), Garcia Prada (1991):

0 e<0,
M,=< T?2§ ¢=0,
S"Y >0

where S"Y. =Y"/S,
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Geodesic approximation

e Low energy vortex dynamics : geodesic motion in (M,, g;2)

e Curve of static vortex solutions (p(t), A(t)), chosen so that
SA+ h(ip, ) = 0.

o g2((,A), (#,A)) = |2l + 1Al
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Holomorphic structure on L

e A holomorphic structure on L is defined by a local
trivialization with holomorphic transition functions
Tij U,' N UJ — C*

e 0p = 0 now well-defined.

e Space of solutions H°(X, L), dim n+ 1 — g complex vector
space.
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Divisor = holomorphic structure on L

e Divisor
D = nip1 + mapa + -+ - + nipx, m+nm+-+nc=n

defines a holomorphic structure on L

7‘,'0(2) = 2
e [p comes with a holomorphic section
50(2) 1 zel
zZ) =
$o z" ze U;

unique holomorphic section vanishing on D (up to
$p — cPp)
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Abel-Jacobi map

e Holomorphic one-forms on ¥: vq,1,... 14
%1V1+fp211/1+"'+ é;nl/l
1 1 n
J2 v+ [Pvat-+ [
AJ({ppra"'vpn}): P . P

”'+pran

e AJ:S"E — C&/Napel = Tjﬁel
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The fibration of M,

e Amazing fact: D ~ D’ (i.e. they equip L with the same
holomorphic structure) iff AJ(D) = AJ(D').

P(HO(Z,L[D])) — Mn
1 AJ
2
TAiel

e M, has structure of a CP"~€ bundle over T2&
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The dissolving limit

e Fix a fibre [D] C M,. Has unique (up to gauge) constant
curvature connexion A s.t. d; = Jpj.

e For each D € [D], let $p be “the" holo section vanishing on
D with ||@p]l2 = 1.

~

e Pseudovortex for divisor D: (1/epp, A)

EZ(ﬁQD = 07)

e Rink (2013) after Baptista and Manton (2003) conjectured:
(1) For small e > 0, Pseudovortex for divisor D is a good approx
to actual vortex for divisor D
(2) L2 metric on fibre [D] is well approximated by L? metric on
space of pseudovortices = egrs
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The dissolving limit

e Theorem (Chaudhuri, Harland, JMS 2024) There exists
C > 0 (depending on [D] and gx) such that, for all D € [D]

-1/2

le™“lepl = 1@blllco + [|Fap — Fzllco < Ce.

Furthermore
e gu2l(p) — gFsllcr < Ce

e Vortices in a fixed fibre converge uniformly to pseudovortices,
and the induced L? metric on each fibre converges in C! to
the Fubini-Study metric.
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The dissolving limit

e Strengthens Garcia-Lara, JMS 2023 in 2 ways:
e Generalizes to arbitrary genus (from g = 0)
e C! convergence of metric (from C° convergence)
e Implies pointwise convergence of geodesics.
e But geodesics in fibre are only dynamically interesting if the
fibre is totally geodesic! For generic ¥, g5, n, none arel!
e Two simple cases with all fibres totally geodesic:
e ¥ =52 (any gyx): Tf‘ﬁe, = {pt}, the whole M, is a single fibre!
o T=T2=C/\ n=2: T;f, =T, fibres = CP! = S?
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e g = 1: only one holo one-form, v = dz

e Al({z1,22}) = [§ dz+ > dz = z1+ 22 € C/A

e Isometry T,: My — My, D ={z1, 20} — {z1 + 3,0 + a}
maps fibre above AJ(D) to fibre above AJ(D) + na

e Hence all fibres are isometric
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Isometry R: My — Mo, {21,22} — {—21, —22}
AJ7Y0) = {{z1, 22} : z1 + zo = 0} = fixed point set of R.
Hence AJ~1(0) is totally geodesic!

Isometries map totally geodesic submfds to totally geodesic
submfds, so all fibres are totally geodesic.
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e Recall, in limit € = 0, the metric on this pillowcase converges

in C! to round metric on S2!

e Can we write down the isometry f : AJ=1(0) — S2 .7

It's holomorphic (w.r.t. coord z)

e |t has branch points at the half periods

e It extends to an even degree 2 holomorphic map ¥ — S2
e It must be of the form f : z — M(p(z))
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AJ71(0) = pillowcase

T.. 1 2+ z +wj is an isometry of AJ71(0).
These generate Ky = Zo X Z».
Only isometric action of Kj on S? is generated by rotations by

7 about a pair of orthogonal axes.
WLOG can assume

To ¢ Ry(m),  Tuy ¢ Ro(m).
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AJ71(0) = pillowcase

0'(2)° = 4(p(z) — e1)(p(2) — &2)(p(z) — e3), & = p(wi)

e Hence M must map the critical values of p to 4 points
constituting a Ky orbit in S2.

e Uniquely determines M up to conjugation by SU(2).
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o 6‘0:00, e]_ :6875', 62:01 e3:_e1
o f(2) = p(2)/e1

“—6) Q,;_—zo ’F=S€A‘

Co=v=
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Rectangular torus

w1 = 1.5, w3 = i

AN
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Equianharmonic torus

im/3

w1:1, w3 = ¢€

" )
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Scalene torus
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e Geodesics in Mo(T?) converge, in the dissolving limit, to
geodesics in the pillowcase AJ~1(0) with the round metric.

e We can compute this metric explicitly (as a metric on the
pillowcase).

e Geodesic flow depends qualitatively on A: if A is rectangular,
all primitive non-scattering geodesics lift to ¥ x X

e If A not rectangular, there are “pursuit” geodesics. These only
lift if you traverse them twice.

e Global structure of M,(T?2)?
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