Two-vortex dynamics on flat tori

Martin Speight Joint work with Gautam Chaudhuri and Derek Harland 31/3/25

University of Leeds

Vortices

 $(L, h) \quad \text{degree } n$ • \downarrow : section φ , connexion A (Σ, g_{Σ}) genus g

$$E(\varphi, A) = \frac{1}{2} \|d_A \varphi\|_{L^2}^2 + \frac{1}{2} \|F_A\|_{L^2}^2 + \frac{1}{2} \left\| \frac{1}{2} (\tau - |\varphi|^2) \right\|_{L^2}^2$$

$$= \frac{1}{2} \left\| *F_A - \frac{1}{2} (\tau - |\varphi|^2) \right\|_{L^2}^2 + \|\overline{\partial}_A \varphi\|_{L^2}^2 + \frac{\tau}{2} \int_{\Sigma} F_A$$

$$\geq \tau \pi n$$

with equality iff

$$\overline{\partial}_A \varphi = 0$$
 (V1), $*F_A = \frac{1}{2}(\tau - |\varphi|^2)$ (V2).

Moduli space

- $M_n = \{$ solutions of (V1), (V2) $\}$ /gauge transformations
- Bradlow bound: $\int_{\Sigma} (V2)$:

$$2\pi n = \frac{\tau}{2} |\Sigma| - \frac{1}{2} ||\varphi||_{L^2}^2$$

$$\Rightarrow ||\varphi||_{L^2}^2 = \tau |\Sigma| - 4\pi n =: \varepsilon \ge 0$$

• Bradlow (1990), Garcia Prada (1991):

$$M_n = \begin{cases} \emptyset & \varepsilon < 0, \\ T^{2g} & \varepsilon = 0, \\ S^n \Sigma & \varepsilon > 0 \end{cases}$$

where $S^n \Sigma = \Sigma^n / S_n$

- Low energy vortex dynamics : geodesic motion in (M_n, g_{L^2})
- Curve of static vortex solutions $(\varphi(t), A(t))$, chosen so that

 $\delta \dot{A} + h(i\varphi, \dot{\varphi}) = 0.$

• $g_{L^2}((\dot{\varphi},\dot{A}),(\dot{\varphi},\dot{A})) = \|\dot{\varphi}\|_{L^2}^2 + \|\dot{A}\|_{L^2}^2.$

Holomorphic structure on L

 A holomorphic structure on L is defined by a local trivialization with holomorphic transition functions *τ_{ij}* : U_i ∩ U_j → C[×]

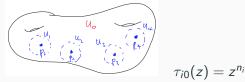
- $\overline{\partial}\varphi = 0$ now well-defined.
- Space of solutions H⁰(Σ, L), dim n + 1 g complex vector space.

Divisor \Rightarrow holomorphic structure on *L*

• Divisor

$$D = n_1 p_1 + n_2 p_2 + \dots + n_k p_k, \qquad n_1 + n_2 + \dots + n_k = n_k$$

defines a holomorphic structure on L



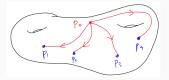
• L_D comes with a holomorphic section

$$\widehat{\varphi}_D(z) = \begin{cases} 1 & z \in U_0 \\ z^{n_i} & z \in U_i \end{cases}$$

unique holomorphic section vanishing on D (up to $\widehat{\varphi}_D \mapsto c \widehat{\varphi}_D$)

• Holomorphic one-forms on Σ : $\nu_1, \nu_2, \dots, \nu_g$

$$AJ(\{p_1, p_2, \dots, p_n\}) = \begin{pmatrix} \int_{p_0}^{p_1} \nu_1 + \int_{p_0}^{p_1} \nu_1 + \dots + \int_{p_0}^{p_n} \nu_1 \\ \int_{p_0}^{p_1} \nu_2 + \int_{p_0}^{p_1} \nu_2 + \dots + \int_{p_0}^{p_n} \nu_2 \\ \vdots \\ \int_{p_0}^{p_1} \nu_g + \int_{p_0}^{p_1} \nu_g + \dots + \int_{p_0}^{p_n} \nu_g \end{pmatrix}$$



• $AJ: S^n\Sigma \to \mathbb{C}^g/\Lambda_{Abel} = T^{2g}_{Abel}$

 Amazing fact: D ~ D' (i.e. they equip L with the same holomorphic structure) iff AJ(D) = AJ(D').

$$\mathbb{P}(H^{0}(\Sigma, L_{[D]})) \hookrightarrow M_{n}$$

$$\downarrow \qquad AJ$$

$$T^{2g}_{Abel}$$

• M_n has structure of a $\mathbb{C}P^{n-g}$ bundle over T^{2g}

- Fix a fibre [D] ⊂ M_n. Has unique (up to gauge) constant curvature connexion s.t. ∂_Â = ∂_[D].
- For each D ∈ [D], let φ̂_D be "the" holo section vanishing on D with ||φ̂_D||_{L²} = 1.
- Pseudovortex for divisor D: $(\sqrt{\varepsilon}\widehat{\varphi}_D, \widehat{A})$

$$\overline{\partial}_{\widehat{A}}(\sqrt{\varepsilon}\widehat{\varphi}_D=0,)$$

- Rink (2013) after Baptista and Manton (2003) conjectured:
 - (1) For small $\varepsilon > 0$, Pseudovortex for divisor D is a good approx to actual vortex for divisor D
 - (2) L^2 metric on fibre [D] is well approximated by L^2 metric on space of pseudovortices = εg_{FS}

- Fix a fibre [D] ⊂ M_n. Has unique (up to gauge) constant curvature connexion s.t. ∂_Â = ∂_[D].
- For each D ∈ [D], let φ̂_D be "the" holo section vanishing on D with ||φ̂_D||_{L²} = 1.
- Pseudovortex for divisor D: $(\sqrt{\varepsilon}\widehat{\varphi}_D, \widehat{A})$

$$\overline{\partial}_{\widehat{A}}(\sqrt{\varepsilon}\widehat{\varphi}_D=0,)$$

- Rink (2013) after Baptista and Manton (2003) conjectured:
 - (1) For small $\varepsilon > 0$, Pseudovortex for divisor D is a good approx to actual vortex for divisor D
 - (2) L^2 metric on fibre [D] is well approximated by L^2 metric on space of pseudovortices = εg_{FS}

- Fix a fibre [D] ⊂ M_n. Has unique (up to gauge) constant curvature connexion s.t. ∂_Â = ∂_[D].
- For each D ∈ [D], let φ̂_D be "the" holo section vanishing on D with ||φ̂_D||_{L²} = 1.
- Pseudovortex for divisor D: $(\sqrt{\varepsilon}\widehat{\varphi}_D, \widehat{A})$

$$\overline{\partial}_{\widehat{A}}(\sqrt{\varepsilon}\widehat{\varphi}_D=0,)$$

- Rink (2013) after Baptista and Manton (2003) conjectured:
 - (1) For small $\varepsilon > 0$, Pseudovortex for divisor D is a good approx to actual vortex for divisor D
 - (2) L^2 metric on fibre [D] is well approximated by L^2 metric on space of pseudovortices = εg_{FS}

- Fix a fibre [D] ⊂ M_n. Has unique (up to gauge) constant curvature connexion s.t. ∂_Â = ∂_[D].
- For each D ∈ [D], let φ̂_D be "the" holo section vanishing on D with ||φ̂_D||_{L²} = 1.
- Pseudovortex for divisor D: $(\sqrt{\varepsilon}\widehat{\varphi}_D, \widehat{A})$

$$\overline{\partial}_{\widehat{A}}(\sqrt{\varepsilon}\widehat{\varphi}_{D}=0,) \qquad *F_{\widehat{A}}\neq \frac{1}{2}(\tau-\varepsilon|\varphi_{D}|^{2})$$

- Rink (2013) after Baptista and Manton (2003) conjectured:
 - (1) For small $\varepsilon > 0$, Pseudovortex for divisor D is a good approx to actual vortex for divisor D
 - (2) L² metric on fibre [D] is well approximated by L² metric on space of pseudovortices = εg_{FS}

- Fix a fibre [D] ⊂ M_n. Has unique (up to gauge) constant curvature connexion s.t. ∂_Â = ∂_[D].
- For each D ∈ [D], let φ̂_D be "the" holo section vanishing on D with ||φ̂_D||_{L²} = 1.
- Pseudovortex for divisor D: $(\sqrt{\varepsilon}\widehat{\varphi}_D, \widehat{A})$

$$\overline{\partial}_{\widehat{A}}(\sqrt{\varepsilon}\widehat{\varphi}_{D}=0,) \qquad \int_{\Sigma} *F_{\widehat{A}} = \int_{\Sigma} \frac{1}{2}(\tau - \varepsilon |\varphi_{D}|^{2})$$

- Rink (2013) after Baptista and Manton (2003) conjectured:
 - (1) For small $\varepsilon > 0$, Pseudovortex for divisor D is a good approx to actual vortex for divisor D
 - (2) L^2 metric on fibre [D] is well approximated by L^2 metric on space of pseudovortices = εg_{FS}

• **Theorem** (Chaudhuri, Harland, JMS 2024) There exists C > 0 (depending on [D] and g_{Σ}) such that, for all $D \in [D]$

$$\|\varepsilon^{-1/2}|\varphi_D| - |\widehat{\varphi}_D|\|_{C^0} + \|F_{A_D} - F_{\widehat{A}}\|_{C^0} \le C\varepsilon.$$

Furthermore

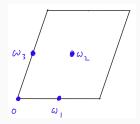
$$\|\varepsilon^{-1}g_{L^2}|_{[D]} - g_{FS}\|_{C^1} \le C\varepsilon$$

 Vortices in a fixed fibre converge uniformly to pseudovortices, and the induced L² metric on each fibre converges in C¹ to the Fubini-Study metric.

- Strengthens Garcia-Lara, JMS 2023 in 2 ways:
 - Generalizes to arbitrary genus (from g = 0)
 - C^1 convergence of metric (from C^0 convergence)
 - Implies pointwise convergence of geodesics.
- But geodesics in **fibre** are only dynamically interesting if the fibre is totally geodesic! For generic Σ, g_Σ, n, none are!
- Two simple cases with all fibres totally geodesic:
 - $\Sigma = S^2$ (any g_{Σ}): $T^{2g}_{Abel} = \{pt\}$, the whole M_n is a single fibre!

•
$$\Sigma = T^2 = \mathbb{C}/\Lambda$$
, $n = 2$: $T^{2g}_{Abel} \equiv \Sigma$, fibres $\equiv \mathbb{C}P^1 \equiv S^2$

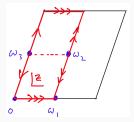
 $M_2(T^2)$



- g = 1: only one holo one-form, $\nu = dz$
- $AJ(\{z_1, z_2\}) = \int_0^{z_1} dz + \int_0^{z_2} dz = z_1 + z_2 \in \mathbb{C}/\Lambda$
- Isometry T_a: M₂ → M₂, D = {z₁, z₂} ↦ {z₁ + a, z₂ + a} maps fibre above AJ(D) to fibre above AJ(D) + na
- Hence all fibres are isometric

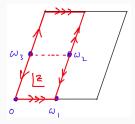
- Isometry $R: M_2
 ightarrow M_2$, $\{z_1, z_2\} \mapsto \{-z_1, -z_2\}$
- $AJ^{-1}(0) = \{\{z_1, z_2\} : z_1 + z_2 = 0\} = \text{fixed point set of } R.$
- Hence $AJ^{-1}(0)$ is totally geodesic!
- Isometries map totally geodesic submfds to totally geodesic submfds, so all fibres are totally geodesic.

$AJ^{-1}(0) =$ pillowcase



- Recall, in limit ε → 0, the metric on this pillowcase converges in C¹ to round metric on S²!
- Can we write down the isometry $f : AJ^{-1}(0) \rightarrow S^2_{round}$?
 - It's holomorphic (w.r.t. coord z)
 - It has branch points at the half periods
 - It extends to an even degree 2 holomorphic map $\Sigma o S^2$
 - It must be of the form $f: z \mapsto M(\wp(z))$

$AJ^{-1}(0) =$ pillowcase



- $T_{\omega_i}: z \mapsto z + \omega_i$ is an isometry of $AJ^{-1}(0)$.
- These generate $K_4 = \mathbb{Z}_2 \times \mathbb{Z}_2$.
- Only isometric action of K_4 on S^2 is generated by rotations by π about a pair of orthogonal axes.
- WLOG can assume

$$T_{\omega_1} \leftrightarrow R_3(\pi), \qquad T_{\omega_3} \leftrightarrow R_2(\pi).$$

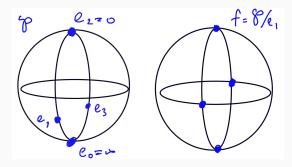
$AJ^{-1}(0) =$ pillowcase

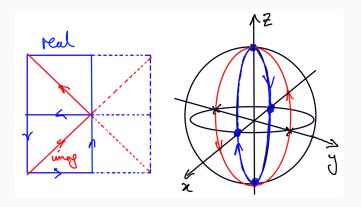


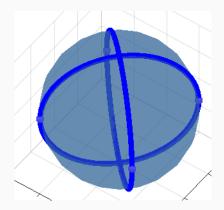
$$\wp'(z)^2 = 4(\wp(z) - e_1)(\wp(z) - e_2)(\wp(z) - e_3), \qquad e_i = \wp(\omega_i)$$

- Hence M must map the critical values of ℘ to 4 points constituting a K₄ orbit in S².
- Uniquely determines M up to conjugation by SU(2).

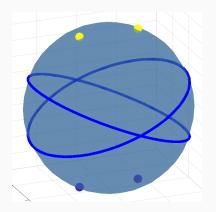
- $e_0 = \infty$, $e_1 = 6.875 \cdots$, $e_2 = 0$, $e_3 = -e_1$
- $f(z) = \wp(z)/e_1$





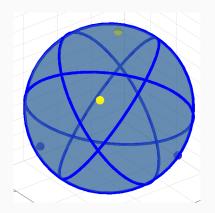


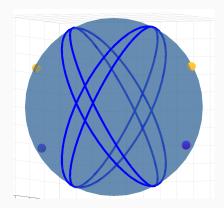
$$\omega_1 = 1.5, \quad \omega_3 = i$$



Equianharmonic torus

$$\omega_1 = 1, \quad \omega_3 = e^{i\pi/3}$$





- Geodesics in M₂(T²) converge, in the dissolving limit, to geodesics in the pillowcase AJ⁻¹(0) with the round metric.
- We can compute this metric explicitly (as a metric on the pillowcase).
- Geodesic flow depends qualitatively on A: if A is rectangular, all primitive non-scattering geodesics lift to $\Sigma\times\Sigma$
- If Λ not rectangular, there are "pursuit" geodesics. These only lift if you traverse them twice.
- Global structure of $M_2(T^2)$?