Skyrme Crystals

Martin Speight
Joint work with Derek Harland and Paul Leask
SIG XI, Krakow, 19/6/23
University of Leeds

General question

- When is a soliton on a torus

$$
\varphi: \mathbb{R}^{k} / \Lambda \rightarrow N
$$

a soliton crystal?

General question

- When is a soliton on a torus

$$
\varphi: \mathbb{R}^{k} / \Lambda \rightarrow N
$$

a soliton crystal?

General question

- When is a soliton on a torus

$$
\varphi: \mathbb{R}^{k} / \Lambda \rightarrow N
$$

a soliton crystal?

- Clearly an artifact of b.c.s!

General question

- When is a soliton on a torus

$$
\varphi: \mathbb{R}^{k} / \Lambda \rightarrow N
$$

a soliton crystal?

- Clearly an artifact of b.c.s!
- φ should minimize energy E w.r.t. all variations of field and period lattice \wedge

Change viewpoint

- All tori are diffeomorphic through linear maps $\mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$.

Change viewpoint

- All tori are diffeomorphic through linear maps $\mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$.
- Identify them all with $\mathbb{T}^{k}=\mathbb{R}^{k} / \mathbb{Z}^{k}$, the cubic torus.

Change viewpoint

- All tori are diffeomorphic through linear maps $\mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$.
- Identify them all with $\mathbb{T}^{k}=\mathbb{R}^{k} / \mathbb{Z}^{k}$, the cubic torus.

$$
\begin{gathered}
\Lambda=\left\{n_{1} \mathbf{X}_{1}+n_{2} \mathbf{X}_{2}+\cdots+n_{k} \mathbf{X}_{k}: \mathbf{n} \in \mathbb{Z}^{k}\right\} \\
f: \mathbb{T}^{3} \rightarrow \mathbb{R}^{k} / \Lambda, \quad f(\mathbf{x})=x_{1} \mathbf{X}_{1}+x_{2} \mathbf{X}_{2}+\cdots+x_{k} \mathbf{X}_{k}
\end{gathered}
$$

Now mfd is fixed, but metric depends on Λ

$$
g_{\Lambda}=f^{*} g_{E u c}=g_{i j} d x_{i} d x_{j}, \quad g_{i j}=\mathbf{X}_{i} \cdot \mathbf{X}_{j} \text { const }
$$

Change viewpoint

- All tori are diffeomorphic through linear maps $\mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$.
- Identify them all with $\mathbb{T}^{k}=\mathbb{R}^{k} / \mathbb{Z}^{k}$, the cubic torus.

$$
\begin{gathered}
\Lambda=\left\{n_{1} \mathbf{X}_{1}+n_{2} \mathbf{X}_{2}+\cdots+n_{k} \mathbf{X}_{k}: \mathbf{n} \in \mathbb{Z}^{k}\right\} \\
f: \mathbb{T}^{3} \rightarrow \mathbb{R}^{k} / \Lambda, \quad f(\mathbf{x})=x_{1} \mathbf{X}_{1}+x_{2} \mathbf{X}_{2}+\cdots+x_{k} \mathbf{X}_{k}
\end{gathered}
$$

Now mfd is fixed, but metric depends on Λ

$$
g_{\Lambda}=f^{*} g_{E u c}=g_{i j} d x_{i} d x_{j}, \quad g_{i j}=\mathbf{X}_{i} \cdot \mathbf{X}_{j} \text { const }
$$

- Minimizing over $\Lambda \leftrightarrow$ minimizing over $g \in S P D_{k}$

Change viewpoint

- All tori are diffeomorphic through linear maps $\mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$.
- Identify them all with $\mathbb{T}^{k}=\mathbb{R}^{k} / \mathbb{Z}^{k}$, the cubic torus.

$$
\begin{gathered}
\Lambda=\left\{n_{1} \mathbf{X}_{1}+n_{2} \mathbf{X}_{2}+\cdots+n_{k} \mathbf{X}_{k}: \mathbf{n} \in \mathbb{Z}^{k}\right\} \\
f: \mathbb{T}^{3} \rightarrow \mathbb{R}^{k} / \Lambda, \quad f(\mathbf{x})=x_{1} \mathbf{X}_{1}+x_{2} \mathbf{X}_{2}+\cdots+x_{k} \mathbf{X}_{k}
\end{gathered}
$$

Now mfd is fixed, but metric depends on Λ

$$
g_{\Lambda}=f^{*} g_{E u c}=g_{i j} d x_{i} d x_{j}, \quad g_{i j}=\mathbf{X}_{i} \cdot \mathbf{X}_{j} \text { const }
$$

- Minimizing over $\Lambda \leftrightarrow$ minimizing over $g \in S P D_{k}$
- Criticality \leftrightarrow stress tensor

Change viewpoint

- All tori are diffeomorphic through linear maps $\mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$.
- Identify them all with $\mathbb{T}^{k}=\mathbb{R}^{k} / \mathbb{Z}^{k}$, the cubic torus.

$$
\begin{gathered}
\Lambda=\left\{n_{1} \mathbf{X}_{1}+n_{2} \mathbf{X}_{2}+\cdots+n_{k} \mathbf{X}_{k}: \mathbf{n} \in \mathbb{Z}^{k}\right\} \\
f: \mathbb{T}^{3} \rightarrow \mathbb{R}^{k} / \Lambda, \quad f(\mathbf{x})=x_{1} \mathbf{X}_{1}+x_{2} \mathbf{X}_{2}+\cdots+x_{k} \mathbf{X}_{k}
\end{gathered}
$$

Now mfd is fixed, but metric depends on Λ

$$
g_{\Lambda}=f^{*} g_{E u c}=g_{i j} d x_{i} d x_{j}, \quad g_{i j}=\mathbf{X}_{i} \cdot \mathbf{X}_{j} \text { const }
$$

- Minimizing over $\Lambda \leftrightarrow$ minimizing over $g \in S P D_{k}$
- Criticality \leftrightarrow stress tensor
- Manoeuvre works provided $E(\varphi, g)$ is geometrically natural

$$
E(\varphi \circ f, g)=E\left(\varphi,\left(f^{-1}\right)^{*} g\right)
$$

Skyrme model

$$
E: \operatorname{Maps}\left(\mathbb{T}^{3}, S U(2)\right) \times S P D_{3} \rightarrow \mathbb{R}
$$

Two minimization problems:

- Fix g. Does $E(\cdot, g):$ Maps $\rightarrow \mathbb{R}$ attain a min in each homotopy class?

Skyrme model

$$
E: \operatorname{Maps}\left(\mathbb{T}^{3}, S U(2)\right) \times S P D_{3} \rightarrow \mathbb{R}
$$

Two minimization problems:

- Fix g. Does $E(\cdot, g):$ Maps $\rightarrow \mathbb{R}$ attain a min in each homotopy class? YES! (at least in H^{1} - low regularity) Auckly, Kapitanski

Skyrme model

$$
E: \operatorname{Maps}\left(\mathbb{T}^{3}, S U(2)\right) \times S P D_{3} \rightarrow \mathbb{R}
$$

Two minimization problems:

- Fix g. Does $E(\cdot, g):$ Maps $\rightarrow \mathbb{R}$ attain a min in each homotopy class? YES! (at least in H^{1} - low regularity) Auckly, Kapitanski
- Fix φ ? Does $E(\varphi, \cdot): S P D_{3} \rightarrow \mathbb{R}$ attain a min?

Skyrme model

$$
E: \operatorname{Maps}\left(\mathbb{T}^{3}, S U(2)\right) \times S P D_{3} \rightarrow \mathbb{R}
$$

Two minimization problems:

- Fix g. Does $E(\cdot, g):$ Maps $\rightarrow \mathbb{R}$ attain a min in each homotopy class? YES! (at least in H^{1} - low regularity) Auckly, Kapitanski
- Fix φ ? Does $E(\varphi, \cdot): S P D_{3} \rightarrow \mathbb{R}$ attain a min? YES! And it's a global min, and there are no other critical points!

The Skyrme energy

$$
E(\varphi, g)=\int_{\mathbb{T}^{3}}\left(-\frac{1}{2} \operatorname{tr}\left(L_{i} L_{j}\right) g^{i j}-\frac{1}{16} \operatorname{tr}\left(\left[L_{i}, L_{j}\right]\left[L_{k}, L_{]}\right]\right) g^{i k} g^{j l}+V(\varphi)\right) \sqrt{|g|} d^{3} x
$$

- Fix $\varphi: \mathbb{T}^{3} \rightarrow S U(2), E_{\varphi}: S P D_{3} \rightarrow \mathbb{R}$

The Skyrme energy

$$
E(\varphi, g)=\int_{\mathbb{T}^{3}}\left(-\frac{1}{2} \operatorname{tr}\left(L_{i} L_{j}\right) g^{i j}-\frac{1}{16} \operatorname{tr}\left(\left[L_{i}, L_{j}\right]\left[L_{k}, L_{]}\right]\right) g^{i k} g^{j l}+V(\varphi)\right) \sqrt{|g|} d^{3} x
$$

- Fix $\varphi: \mathbb{T}^{3} \rightarrow S U(2), E_{\varphi}: S P D_{3} \rightarrow \mathbb{R}$

$$
E_{\varphi}(g)=\sqrt{|g|} \operatorname{tr}\left(H g^{-1}\right)+\frac{1}{\sqrt{|g|}} \operatorname{tr}(\Omega g)+C_{0} \sqrt{|g|}
$$

- Constants:
- H, Ω : symmetric positive semidefinite matrices
- $C \geq 0$
- Nondegeneracy assumption: φ is C^{1} and immersive somewhere (automatic if $B \neq 0$).

The Skyrme energy

$$
E(\varphi, g)=\int_{\mathbb{T}^{3}}\left(-\frac{1}{2} \operatorname{tr}\left(L_{i} L_{j}\right) g^{i j}-\frac{1}{16} \operatorname{tr}\left(\left[L_{i}, L_{j}\right]\left[L_{k}, L_{]}\right]\right) g^{i k} g^{j l}+V(\varphi)\right) \sqrt{|g|} d^{3} x
$$

- Fix $\varphi: \mathbb{T}^{3} \rightarrow S U(2), E_{\varphi}: S P D_{3} \rightarrow \mathbb{R}$

$$
E_{\varphi}(g)=\sqrt{|g|} \operatorname{tr}\left(H g^{-1}\right)+\frac{1}{\sqrt{|g|}} \operatorname{tr}(\Omega g)+C_{0} \sqrt{|g|}
$$

- Constants:
- H, Ω : symmetric positive semidefinite matrices
- $C \geq 0$
- Nondegeneracy assumption: φ is C^{1} and immersive somewhere (automatic if $B \neq 0$).
$\Rightarrow H, \Omega \in S P D_{3}$

The Skyrme term. Really?

$$
E_{4}=\frac{1}{4} \int_{\mathbb{T}^{3}}\left|\varphi^{*} \omega\right|_{g}^{2} \operatorname{vol}_{g}, \quad \omega \in \Omega^{2}(G) \otimes \mathfrak{g}
$$

The Skyrme term. Really?

$$
E_{4}=\frac{1}{4} \int_{\mathbb{T}^{3}}\left|\varphi^{*} \omega\right|_{g}^{2} \mathrm{vol}_{g}, \quad \omega \in \Omega^{2}(G) \otimes \mathfrak{g}
$$

- Let vol ${ }_{0}=d x_{1} \wedge d x_{2} \wedge d x_{3}$. Isomorphism

$$
T M \rightarrow\left(\Lambda^{2} T^{*} M\right), \quad X \mapsto \iota \times \operatorname{vol}_{0}
$$

The Skyrme term. Really?

$$
E_{4}=\frac{1}{4} \int_{\mathbb{T}^{3}}\left|\varphi^{*} \omega\right|_{g}^{2} \mathrm{vol}_{g}, \quad \omega \in \Omega^{2}(G) \otimes \mathfrak{g}
$$

- Let vol ${ }_{0}=d x_{1} \wedge d x_{2} \wedge d x_{3}$. Isomorphism

$$
T M \otimes \mathfrak{g} \rightarrow\left(\Lambda^{2} T^{*} M\right) \otimes \mathfrak{g}, \quad X \mapsto \iota X \text { vol }_{0}
$$

Define X_{φ} s.t. $\iota_{X_{\varphi}}$ vol $_{0}=\varphi^{*} \omega$.

The Skyrme term. Really?

$$
E_{4}=\left.\frac{1}{4} \int_{\mathbb{T}^{3}}\left|\varphi^{*} \omega\right|_{g}^{2} v o\right|_{g}, \quad \omega \in \Omega^{2}(G) \otimes \mathfrak{g}
$$

- Let vol ${ }_{0}=d x_{1} \wedge d x_{2} \wedge d x_{3}$. Isomorphism

$$
T M \otimes \mathfrak{g} \rightarrow\left(\Lambda^{2} T^{*} M\right) \otimes \mathfrak{g}, \quad X \mapsto \iota X \operatorname{vol}_{0}
$$

Define X_{φ} s.t. $\iota_{X_{\varphi}} \mathrm{vol}_{0}=\varphi^{*} \omega$.

- This vector field is independent of g !

The Skyrme term. Really?

$$
E_{4}=\left.\frac{1}{4} \int_{\mathbb{T}^{3}}\left|\varphi^{*} \omega\right|_{g}^{2} v\right|_{g}, \quad \omega \in \Omega^{2}(G) \otimes \mathfrak{g}
$$

- Let vol ${ }_{0}=d x_{1} \wedge d x_{2} \wedge d x_{3}$. Isomorphism

$$
T M \otimes \mathfrak{g} \rightarrow\left(\Lambda^{2} T^{*} M\right) \otimes \mathfrak{g}, \quad X \mapsto \iota X \text { vol }_{0}
$$

Define X_{φ} s.t. $\iota \chi_{\varphi}$ vol $_{0}=\varphi^{*} \omega$.

- This vector field is independent of g !
- Similarly, define X_{φ}^{g} s.t. $\iota_{X_{\varphi}^{g}} \mathrm{vol}_{g}=\varphi^{*} \omega$

The Skyrme term. Really?

$$
E_{4}=\left.\frac{1}{4} \int_{\mathbb{T}^{3}}\left|\varphi^{*} \omega\right|_{g}^{2} v\right|_{g}, \quad \omega \in \Omega^{2}(G) \otimes \mathfrak{g}
$$

- Let vol ${ }_{0}=d x_{1} \wedge d x_{2} \wedge d x_{3}$. Isomorphism

$$
T M \otimes \mathfrak{g} \rightarrow\left(\Lambda^{2} T^{*} M\right) \otimes \mathfrak{g}, \quad X \mapsto \iota X \text { vol }_{0}
$$

Define X_{φ} s.t. $\iota_{X_{\varphi}} \mathrm{vol}_{0}=\varphi^{*} \omega$.

- This vector field is independent of g !
- Similarly, define X_{φ}^{g} s.t. $\iota_{X}{ }_{\varphi}^{g}$ vol $_{g}=\varphi^{*} \omega$
- Clearly $\sqrt{|g|} X_{\varphi}^{g}=X_{\varphi}$

The Skyrme term. Really?

$$
E_{4}=\left.\frac{1}{4} \int_{\mathbb{T}^{3}}\left|\varphi^{*} \omega\right|_{g}^{2} v\right|_{g}, \quad \omega \in \Omega^{2}(G) \otimes \mathfrak{g}
$$

- Let vol ${ }_{0}=d x_{1} \wedge d x_{2} \wedge d x_{3}$. Isomorphism

$$
T M \otimes \mathfrak{g} \rightarrow\left(\Lambda^{2} T^{*} M\right) \otimes \mathfrak{g}, \quad X \mapsto \iota_{X} \text { vol }_{0}
$$

Define X_{φ} s.t. $\iota \chi_{\varphi}$ vol $_{0}=\varphi^{*} \omega$.

- This vector field is independent of g !
- Similarly, define X_{φ}^{g} s.t. $\iota_{X_{\varphi}^{g}} \mathrm{vol}_{g}=\varphi^{*} \omega$
- Clearly $\sqrt{|g|} X_{\varphi}^{g}=X_{\varphi}$
- Now $X_{\varphi}^{g}=\sharp_{g}{ }^{*} g \varphi^{*} \omega$, so

$$
\left|\varphi^{*} \omega\right|_{g}^{2}=\left|X_{\varphi}^{g}\right|_{g}^{2}=\frac{1}{|g|} g\left(X_{\varphi}, X_{\varphi}\right)
$$

The Skyrme term. Really?

- Hence

$$
\begin{aligned}
E_{4}(g) & =\frac{g_{i j}}{\sqrt{|g|}} \Omega_{i j} \\
\Omega_{i j} & =\frac{1}{4} \int_{T^{3}} h\left(X_{i}, X_{j}\right) d^{3} x
\end{aligned}
$$

Existence of minimizing metrics

$$
E_{\varphi}=\sqrt{|g|} \operatorname{tr}\left(\mathrm{Hg}^{-1}\right)+\frac{1}{\sqrt{|g|}} \operatorname{tr}(\Omega g)+C \sqrt{|g|}
$$

Existence of minimizing metrics

$$
E_{\varphi}=\operatorname{tr}\left(H \Sigma^{-1}\right)+\operatorname{tr}(\Omega \Sigma)+\frac{C}{\operatorname{det} \Sigma}, \quad \Sigma=\frac{g}{\sqrt{|g|}}
$$

Existence of minimizing metrics

$$
E_{\varphi}=\operatorname{tr}\left(H \Sigma^{-1}\right)+\operatorname{tr}(\Omega \Sigma)+\frac{C}{\operatorname{det} \Sigma}, \quad \Sigma=\frac{g}{\sqrt{|g|}}
$$

- $f:(0, \infty)^{3} \times O(3) \rightarrow S P D_{3}, f(\lambda, \mathscr{O})=\mathscr{O} D_{\lambda} \mathscr{O}^{T}$
- We will show $E \circ f:(0, \infty)^{3} \times O(3) \rightarrow \mathbb{R}$ attains a min

Existence of minimizing metrics

$$
(E \circ f)(\lambda, \mathscr{O})=\operatorname{tr}\left(\mathscr{O}^{-1} H \mathscr{O} D_{\lambda}^{-1}\right)+\operatorname{tr}\left(\mathscr{O}^{-1} \Omega \mathscr{O} D_{\lambda}\right)+\frac{C}{\lambda_{1} \lambda_{2} \lambda_{3}}
$$

Existence of minimizing metrics

$$
(E \circ f)(\lambda, \mathscr{O})=\operatorname{tr}\left(\mathscr{O}^{-1} H \mathscr{O} D_{\lambda}^{-1}\right)+\operatorname{tr}\left(\mathscr{O}^{-1} \Omega \mathscr{O} D_{\lambda}\right)+\frac{C}{\lambda_{1} \lambda_{2} \lambda_{3}}
$$

- Consider the smooth functions $O(3) \rightarrow(0, \infty)$

$$
\mathscr{O} \mapsto\left(\mathscr{O}^{-1} H \mathscr{O}\right)_{a a}, \quad \mathscr{O} \mapsto\left(\mathscr{O}^{-1} \Omega \mathscr{O}\right)_{a a}
$$

Since $O(3)$ is compact, they're all bounded away from 0

Existence of minimizing metrics

$$
(E \circ f)(\lambda, \mathscr{O})=\operatorname{tr}\left(\mathscr{O}^{-1} H \mathscr{O} D_{\lambda}^{-1}\right)+\operatorname{tr}\left(\mathscr{O}^{-1} \Omega \mathscr{O} D_{\lambda}\right)+\frac{C}{\lambda_{1} \lambda_{2} \lambda_{3}}
$$

- Consider the smooth functions $O(3) \rightarrow(0, \infty)$

$$
\mathscr{O} \mapsto\left(\mathscr{O}^{-1} H \mathscr{O}\right)_{a a}, \quad \mathscr{O} \mapsto\left(\mathscr{O}^{-1} \Omega \mathscr{O}\right)_{a a}
$$

Since $O(3)$ is compact, they're all bounded away from 0

- Exists $\alpha>0$ s.t. for all $(\boldsymbol{\lambda}, \mathscr{O})$,

$$
\begin{equation*}
(E \circ f)(\boldsymbol{\lambda}, \mathscr{O}) \geq \alpha\left(\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}+\lambda_{1}+\lambda_{2}+\lambda_{3}\right) . \tag{*}
\end{equation*}
$$

Existence

- Consider now a sequence $\left(\boldsymbol{\lambda}_{n}, \mathscr{O}_{n}\right)$ s.t.

$$
(E \circ f)\left(\lambda_{n}, \mathscr{O}_{n}\right) \rightarrow E_{*}=\inf E \circ f
$$

Existence

- Consider now a sequence $\left(\boldsymbol{\lambda}_{n}, \mathscr{O}_{n}\right)$ s.t.

$$
(E \circ f)\left(\lambda_{n}, \mathscr{O}_{n}\right) \rightarrow E_{*}=\inf E \circ f
$$

- By $(*)$ exists $K>1$ s.t. $\lambda_{n} \in\left[K^{-1}, K\right]^{3}$, so sequence has a convergent subsequence $\left(\lambda_{n}, \mathscr{O}_{n}\right) \rightarrow\left(\lambda_{*}, \mathscr{O}_{*}\right)$.

Existence

- Consider now a sequence $\left(\boldsymbol{\lambda}_{n}, \mathscr{O}_{n}\right)$ s.t.

$$
(E \circ f)\left(\lambda_{n}, \mathscr{O}_{n}\right) \rightarrow E_{*}=\inf E \circ f
$$

- By $(*)$ exists $K>1$ s.t. $\boldsymbol{\lambda}_{n} \in\left[K^{-1}, K\right]^{3}$, so sequence has a convergent subsequence $\left(\lambda_{n}, \mathscr{O}_{n}\right) \rightarrow\left(\boldsymbol{\lambda}_{*}, \mathscr{O}_{*}\right)$.
- Continuity of E implies $(E \circ f)\left(\boldsymbol{\lambda}_{*}, \mathscr{O}_{*}\right)=E_{*}$, i.e. $E \circ f$ attains a min

Uniqueness

- Claim E has no other critical points.

Uniqueness

- Claim E has no other critical points.
- $E: S P D_{3} \rightarrow \mathbb{R}$ is strictly convex!

Uniqueness

- Claim E has no other critical points.
- $E: S P D_{3} \rightarrow \mathbb{R}$ is strictly convex!
- $f: M \rightarrow \mathbb{R}$ is strictly convex if, for all geodesics γ in M, $(f \circ \gamma)^{\prime \prime}>0$

Uniqueness

- Claim E has no other critical points.
- $E: S P D_{3} \rightarrow \mathbb{R}$ is strictly convex!
- $f: M \rightarrow \mathbb{R}$ is strictly convex if, for all geodesics γ in M, $(f \circ \gamma)^{\prime \prime}>0$
- Metric on $S P D_{3}$?

Uniqueness

$$
\|\dot{\Sigma}\|^{2}=\operatorname{tr}\left(\Sigma^{-1} \dot{\Sigma} \Sigma^{-1} \dot{\Sigma}\right)
$$

Uniqueness

$$
\|\dot{\Sigma}\|^{2}=\operatorname{tr}\left(\Sigma^{-1} \dot{\Sigma} \Sigma^{-1} \dot{\Sigma}\right)
$$

- Complete, negatively curved, unique geodesic between any pair of points.

Uniqueness

$$
\|\dot{\Sigma}\|^{2}=\operatorname{tr}\left(\Sigma^{-1} \dot{\Sigma} \Sigma^{-1} \dot{\Sigma}\right)
$$

- Complete, negatively curved, unique geodesic between any pair of points.
- Invariant under $G L(3, \mathbb{R})$ action $\Sigma \mapsto A \Sigma A^{T}$.

Uniqueness

$$
\|\dot{\Sigma}\|^{2}=\operatorname{tr}\left(\Sigma^{-1} \dot{\Sigma} \Sigma^{-1} \dot{\Sigma}\right)
$$

- Complete, negatively curved, unique geodesic between any pair of points.
- Invariant under $G L(3, \mathbb{R})$ action $\Sigma \mapsto A \Sigma A^{T}$.
- $\iota: \Sigma \mapsto \Sigma^{-1}$ is an isometry.

Uniqueness

$$
\|\dot{\Sigma}\|^{2}=\operatorname{tr}\left(\Sigma^{-1} \dot{\Sigma} \Sigma^{-1} \dot{\Sigma}\right)
$$

- Complete, negatively curved, unique geodesic between any pair of points.
- Invariant under $G L(3, \mathbb{R})$ action $\Sigma \mapsto A \Sigma A^{T}$.
- $\iota: \Sigma \mapsto \Sigma^{-1}$ is an isometry.
- Geodesic through $\mathbb{I}_{3}: \Sigma(t)=\exp (t \xi)$

Uniqueness

$$
\|\dot{\Sigma}\|^{2}=\operatorname{tr}\left(\Sigma^{-1} \dot{\Sigma} \Sigma^{-1} \dot{\Sigma}\right)
$$

- Complete, negatively curved, unique geodesic between any pair of points.
- Invariant under $G L(3, \mathbb{R})$ action $\Sigma \mapsto A \Sigma A^{T}$.
- $\iota: \Sigma \mapsto \Sigma^{-1}$ is an isometry.
- Geodesic through $\mathbb{I}_{3}: \Sigma(t)=\exp (t \xi)$
- Geodesic through $\Sigma(0): \Sigma(t)=A \exp (t \xi) A^{T}$ where $A A^{T}=\Sigma(0)$

Uniqueness

$$
\begin{aligned}
E_{4}(\Sigma) & =\operatorname{tr}(\Omega \Sigma) \\
E_{4}(\Sigma(t)) & =\operatorname{tr}\left(\Omega A \exp (t \xi) A^{T}\right) \\
& =\operatorname{tr}\left(\Omega_{A} \exp (t \xi)\right), \quad \Omega_{A}=A^{T} \Omega A \\
\left.\frac{d^{2}}{d t^{2}} E_{4}(\Sigma(t))\right|_{t=0} & =\operatorname{tr}\left(\Omega_{A} \xi^{2}\right)>0
\end{aligned}
$$

- So E_{4} is strictly convex.

Uniqueness

$$
E_{2}(\Sigma)=\operatorname{tr}\left(H \Sigma^{-1}\right)=\left(\hat{E}_{4} \circ \iota\right)(\Sigma)
$$

Uniqueness

$$
E_{2}(\Sigma)=\operatorname{tr}\left(H \Sigma^{-1}\right)=\left(\hat{E}_{4} \circ \iota\right)(\Sigma)
$$

- ι is an isometry, so E_{2} is strictly convex

Uniqueness

$$
E_{2}(\Sigma)=\operatorname{tr}\left(H \Sigma^{-1}\right)=\left(\widehat{E}_{4} \circ \iota\right)(\Sigma)
$$

- ι is an isometry, so E_{2} is strictly convex
- det : $S P D_{3} \rightarrow \mathbb{R}$ is convex

Uniqueness

$$
E_{2}(\Sigma)=\operatorname{tr}\left(H \Sigma^{-1}\right)=\left(\widehat{E}_{4} \circ \iota\right)(\Sigma)
$$

- ι is an isometry, so E_{2} is strictly convex
- det : $S P D_{3} \rightarrow \mathbb{R}$ is convex
- Hence $E_{0}=$ det o८ is convex

Uniqueness

$$
E_{2}(\Sigma)=\operatorname{tr}\left(H \Sigma^{-1}\right)=\left(\widehat{E}_{4} \circ \iota\right)(\Sigma)
$$

- ι is an isometry, so E_{2} is strictly convex
- det : $S P D_{3} \rightarrow \mathbb{R}$ is convex
- Hence $E_{0}=$ deto८ is convex
- So $E=E_{2}+E_{4}+E_{0}$ is strictly convex. Hence it has at most one critical point. (Assume $\Sigma_{*}, \Sigma_{* *}$ both cps, apply Rolle's Theorem to $(E \circ \gamma)^{\prime}$ where γ is the geodesic between them.)

The numerical problem

$$
\ddot{x}=-\operatorname{grad} E(x)
$$

The Kugler-Shtrikman crystal (massless model)

$$
E=E_{2}+E_{4}
$$

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{3}\right) & \mapsto\left(x_{2}, x_{3}, x_{1}\right) \\
\left(\varphi_{0}, \varphi_{1}, \varphi_{2}, \varphi_{3}\right) & \mapsto\left(\varphi_{0}, \varphi_{2}, \varphi_{3}, \varphi_{1}\right) \\
\left(x_{1}, x_{2}, x_{3}\right) & \mapsto\left(x_{2},-x_{1}, x_{3}\right) \\
\left(\varphi_{0}, \varphi_{1}, \varphi_{2}, \varphi_{3}\right) & \mapsto\left(\varphi_{0}, \varphi_{2},-\varphi_{1}, \varphi_{3}\right) \\
\left(x_{1}, x_{2}, x_{3}\right) & \mapsto\left(x_{1}+1 / 2, x_{2}, x_{3}\right) \\
\left(\varphi_{0}, \varphi_{1}, \varphi_{2}, \varphi_{3}\right) & \mapsto\left(-\varphi_{0},-\varphi_{1}, \varphi_{2}, \varphi_{3}\right)
\end{aligned}
$$

The Kugler-Shtrikman crystal: turning on the pion mass

- Massless model has global $S O(4)$ symmetry: no boundary to break this

The Kugler-Shtrikman crystal: turning on the pion mass

- Massless model has global $S O(4)$ symmetry: no boundary to break this
- Above solution $\varphi_{K S}, g_{K S}=L \mathbb{I}_{3}$ is one point on a $S O(4)$ orbit of solutions

The Kugler-Shtrikman crystal: turning on the pion mass

- Massless model has global $S O(4)$ symmetry: no boundary to break this
- Above solution $\varphi_{K S}, g_{K S}=L \mathbb{I}_{3}$ is one point on a $S O(4)$ orbit of solutions
- Turn on pion mass:

$$
E_{t}=E_{0}+t \int_{\mathbb{T}^{3}}\left(1-\varphi_{0}\right) \sqrt{|g|} d^{3} x
$$

What happens to these critical points?

The Kugler-Shtrikman crystal: turning on the pion mass

- Massless model has global $S O(4)$ symmetry: no boundary to break this
- Above solution $\varphi_{K S}, g_{K S}=L \mathbb{I}_{3}$ is one point on a $S O(4)$ orbit of solutions
- Turn on pion mass:

$$
E_{t}=E_{0}+t \int_{\mathbb{T}^{3}}\left(1-\varphi_{0}\right) \sqrt{|g|} d^{3} x
$$

What happens to these critical points?

- No reason to expect degenerate critical points to survive perturbation

Degenerate critical points are unstable

Degenerate critical points are unstable

Degenerate critical points are unstable

Degenerate critical points are unstable

But they can be stabilized by symmetry!

- Say $E_{t}: X \rightarrow \mathbb{R}$ has nontrivial symmetry group G.

But they can be stabilized by symmetry!

- Say $E_{t}: X \rightarrow \mathbb{R}$ has nontrivial symmetry group G.

$$
E_{t}(g x)=E_{t}(x)
$$

But they can be stabilized by symmetry!

- Say $E_{t}: X \rightarrow \mathbb{R}$ has nontrivial symmetry group G.
- Say (degenerate) c.p. x_{0} of E_{0} has stabilizer $\Gamma<G$.

But they can be stabilized by symmetry!

- Say $E_{t}: X \rightarrow \mathbb{R}$ has nontrivial symmetry group G.
- Say (degenerate) c.p. x_{0} of E_{0} has stabilizer $\Gamma<G$.

$$
\Gamma=\left\{g: g x_{0}=x_{0}\right\}
$$

But they can be stabilized by symmetry!

- Say $E_{t}: X \rightarrow \mathbb{R}$ has nontrivial symmetry group G.
- Say (degenerate) c.p. x_{0} of E_{0} has stabilizer $\Gamma<G$.
- Think of x_{0} as c.p. of restriction $E_{0} \mid: X^{\Gamma} \rightarrow \mathbb{R}$.

But they can be stabilized by symmetry!

- Say $E_{t}: X \rightarrow \mathbb{R}$ has nontrivial symmetry group G.
- Say (degenerate) c.p. x_{0} of E_{0} has stabilizer $\Gamma<G$.
- Think of x_{0} as c.p. of restriction $E_{0} \mid: X^{\ulcorner } \rightarrow \mathbb{R}$.

$$
X^{\ulcorner }=\{x: \forall g \in \Gamma, g x=x\}
$$

But they can be stabilized by symmetry!

- Say $E_{t}: X \rightarrow \mathbb{R}$ has nontrivial symmetry group G.
- Say (degenerate) c.p. x_{0} of E_{0} has stabilizer $\Gamma<G$.
- Think of x_{0} as c.p. of restriction $E_{0} \mid: X^{\Gamma} \rightarrow \mathbb{R}$. Maybe it's nondegenerate as a c.p. of $E_{0} \mid$

But they can be stabilized by symmetry!

- Say $E_{t}: X \rightarrow \mathbb{R}$ has nontrivial symmetry group G.
- Say (degenerate) c.p. x_{0} of E_{0} has stabilizer $\Gamma<G$.
- Think of x_{0} as c.p. of restriction $E_{0} \mid: X^{\Gamma} \rightarrow \mathbb{R}$. Maybe it's nondegenerate as a c.p. of $E_{0} \mid$
- Then it continues as c.p. of $E_{t} \mid: X^{\Gamma} \rightarrow \mathbb{R}$ by IFT applied to $d E_{t} \mid$

But they can be stabilized by symmetry!

- Say $E_{t}: X \rightarrow \mathbb{R}$ has nontrivial symmetry group G.
- Say (degenerate) c.p. x_{0} of E_{0} has stabilizer $\Gamma<G$.
- Think of x_{0} as c.p. of restriction $E_{0} \mid: X^{\Gamma} \rightarrow \mathbb{R}$. Maybe it's nondegenerate as a c.p. of $E_{0} \mid$
- Then it continues as c.p. of $E_{t} \mid: X^{\Gamma} \rightarrow \mathbb{R}$ by IFT applied to $d E_{t}$
- Continues as c.p. of $E_{t}: X \rightarrow \mathbb{R}$ by PSC

But they can be stabilized by symmetry!

- Say $E_{t}: X \rightarrow \mathbb{R}$ has nontrivial symmetry group G.
- Say (degenerate) c.p. x_{0} of E_{0} has stabilizer $\Gamma<G$.
- Think of x_{0} as c.p. of restriction $E_{0} \mid: X^{\Gamma} \rightarrow \mathbb{R}$. Maybe it's nondegenerate as a c.p. of $E_{0} \mid$
- Then it continues as c.p. of $E_{t} \mid: X^{\Gamma} \rightarrow \mathbb{R}$ by IFT applied to $d E_{t} \mid$
- Continues as c.p. of $E_{t}: X \rightarrow \mathbb{R}$ by PSC
- Nondegenerate \Rightarrow isolated.

Symmetry analysis

- Apply this to

$$
E_{t}=E_{2}+E_{4}+t \int_{\mathbb{T}^{3}}\left(1-\varphi_{0}\right) \mathrm{vol}_{g}
$$

- $X=C^{2}\left(\mathbb{T}^{3}, S U(2)\right) \times S P D_{3}$
- $G=S O(3) \times \operatorname{Aut}\left(T^{3}\right)$

Symmetry analysis

- Apply this to

$$
E_{t}=E_{2}+E_{4}+t \int_{\mathbb{T}^{3}}\left(1-\varphi_{0}\right) \mathrm{vol}_{g}
$$

- $X=C^{2}\left(\mathbb{T}^{3}, S U(2)\right) \times S P D_{3}$
- $G=S O(3) \times \operatorname{Aut}\left(T^{3}\right)$
- Identify points p in $S O(4)$ orbit of $\left(\varphi_{K S}, g_{K S}\right)$ with isotropy group $\Gamma<G$ s.t.

$$
X^{\ulcorner } \cap \text { orbit }=\{p\}
$$

Symmetry analysis

- Apply this to

$$
E_{t}=E_{2}+E_{4}+t \int_{\mathbb{T}^{3}}\left(1-\varphi_{0}\right) \mathrm{vol}_{g}
$$

- $X=C^{2}\left(\mathbb{T}^{3}, S U(2)\right) \times S P D_{3}$
- $G=S O(3) \times \operatorname{Aut}\left(T^{3}\right)$
- Identify points p in $S O(4)$ orbit of $\left(\varphi_{K S}, g_{K S}\right)$ with isotropy group $\Gamma<G$ s.t.

$$
X^{\ulcorner } \cap \text { orbit }=\{p\}
$$

Then p is an isolated c.p. of $E \mid X^{\Gamma}$

Symmetry analysis

- Apply this to

$$
E_{t}=E_{2}+E_{4}+t \int_{\mathbb{T}^{3}}\left(1-\varphi_{0}\right) \mathrm{vol}_{g}
$$

- $X=C^{2}\left(\mathbb{T}^{3}, S U(2)\right) \times S P D_{3}$
- $G=S O(3) \times \operatorname{Aut}\left(T^{3}\right)$
- Identify points p in $S O(4)$ orbit of $\left(\varphi_{K S}, g_{K S}\right)$ with isotropy group $\Gamma<G$ s.t.

$$
X^{\ulcorner } \cap \text { orbit }=\{p\}
$$

Then p is an isolated c.p. of $E \mid X^{\Gamma}$

- Reduces to a problem in representation theory of subgroups of O_{h}

The KS crystals that (should) survive

$$
\varphi_{0}=0.9
$$

$R_{\text {sheet }} \varphi_{K S}$

$$
\varphi_{0}=-0.9
$$

$R_{\text {chain }} \varphi_{K S}$

Skyrme crystals at pion mass $t=1$

Energy ordering: sheet $<$ chain $<\alpha<$ KS

$$
\begin{aligned}
& g_{\text {sheet }}=\left(\begin{array}{ccc}
L_{1} & 0 & 0 \\
0 & L_{1} & 0 \\
0 & 0 & L_{3}
\end{array}\right) \\
& L_{3}>L_{1}
\end{aligned}
$$

$$
g_{\text {chain }}=\left(\begin{array}{ccc}
L_{1} & 0 & 0 \\
0 & L_{2} & 0 \\
0 & 0 & L_{2}
\end{array}\right)
$$

$$
L_{2}>L_{1}
$$

trigonal, but not cubic!

Isospin inertia tensors

$$
\begin{aligned}
& U_{K S}=\left(\begin{array}{ccc}
165.2 & 0 & 0 \\
0 & 165.2 & 0 \\
0 & 0 & 165.2
\end{array}\right), \quad U_{\alpha}=\left(\begin{array}{ccc}
135.5 & 0 & 0 \\
0 & 135.5 & 0 \\
0 & 0 & 167.3
\end{array}\right), \\
& U_{\text {sheet }}=\left(\begin{array}{ccc}
135.8 & 0 & 0 \\
0 & 135.8 & 0 \\
0 & 0 & 166.8
\end{array}\right), \quad U_{\text {chain }}=\left(\begin{array}{ccc}
135.6 & 0 & 0 \\
0 & 135.7 & 0 \\
0 & 0 & 167.2
\end{array}\right) .
\end{aligned}
$$

Optimal crystals at fixed baryon density

- Baryon density $\rho=B / \sqrt{\operatorname{det} g}=B \operatorname{det} \Sigma$

Optimal crystals at fixed baryon density

- Baryon density $\rho=B / \sqrt{\operatorname{det} g}=B \operatorname{det} \Sigma$
- Minimize $E(\Sigma)$ over a level set of det : $S P D_{3} \rightarrow(0, \infty)$

Optimal crystals at fixed baryon density

- Baryon density $\rho=B / \sqrt{\operatorname{det} g}=B \operatorname{det} \Sigma$
- Minimize $E(\Sigma)$ over a level set of det : $S P D_{3} \rightarrow(0, \infty)$
- Existence of global min follows immediately

$$
E \geq \alpha\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}\right)
$$

confines minimizing sequence to a compact subset of $\operatorname{det}^{-1}(\rho / B)$

Optimal crystals at fixed baryon density

- Baryon density $\rho=B / \sqrt{\operatorname{det} g}=B \operatorname{det} \Sigma$
- Minimize $E(\Sigma)$ over a level set of det : $S P D_{3} \rightarrow(0, \infty)$
- Existence of global min follows immediately

$$
E \geq \alpha\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}\right)
$$

confines minimizing sequence to a compact subset of $\operatorname{det}^{-1}(\rho / B)$

- General geodesic $\Sigma(t)=A e^{t \xi} A^{T}$

$$
\operatorname{det} \Sigma(t)=\operatorname{det} A^{2} e^{t \operatorname{tr} \xi}=\operatorname{det} \Sigma(0) e^{t \operatorname{tr} \xi}
$$

Optimal crystals at fixed baryon density

- Baryon density $\rho=B / \sqrt{\operatorname{det} g}=B \operatorname{det} \Sigma$
- Minimize $E(\Sigma)$ over a level set of det : $S P D_{3} \rightarrow(0, \infty)$
- Existence of global min follows immediately

$$
E \geq \alpha\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}\right)
$$

confines minimizing sequence to a compact subset of $\operatorname{det}^{-1}(\rho / B)$

- General geodesic $\Sigma(t)=A e^{t \xi} A^{T}$

$$
\operatorname{det} \Sigma(t)=\operatorname{det} A^{2} e^{t \operatorname{tr} \xi}=\operatorname{det} \Sigma(0) e^{t \operatorname{tr} \xi}
$$

- Tangent to $\operatorname{det}^{-1}(\operatorname{det} \Sigma(0))$ iff $\operatorname{tr} \xi=0$

Optimal crystals at fixed baryon density

- Baryon density $\rho=B / \sqrt{\operatorname{det} g}=B \operatorname{det} \Sigma$
- Minimize $E(\Sigma)$ over a level set of det : $S P D_{3} \rightarrow(0, \infty)$
- Existence of global min follows immediately

$$
E \geq \alpha\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}\right)
$$

confines minimizing sequence to a compact subset of $\operatorname{det}^{-1}(\rho / B)$

- General geodesic $\Sigma(t)=A e^{t \xi} A^{T}$

$$
\operatorname{det} \Sigma(t)=\operatorname{det} A^{2} e^{t \operatorname{tr} \xi}=\operatorname{det} \Sigma(0) e^{t \operatorname{tr} \xi}
$$

- Tangent to $\operatorname{det}^{-1}(\operatorname{det} \Sigma(0))$ iff $\operatorname{tr} \xi=0$
- But then it stays on $\operatorname{det}^{-1}(\operatorname{det} \Sigma(0))$ for all t !

Optimal crystals at fixed baryon density

- Baryon density $\rho=B / \sqrt{\operatorname{det} g}=B \operatorname{det} \Sigma$
- Minimize $E(\Sigma)$ over a level set of det : $S P D_{3} \rightarrow(0, \infty)$
- Existence of global min follows immediately

$$
E \geq \alpha\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}\right)
$$

confines minimizing sequence to a compact subset of $\operatorname{det}^{-1}(\rho / B)$

- General geodesic $\Sigma(t)=A e^{t \xi} A^{T}$

$$
\operatorname{det} \Sigma(t)=\operatorname{det} A^{2} e^{t \operatorname{tr} \xi}=\operatorname{det} \Sigma(0) e^{t \operatorname{tr} \xi}
$$

- Tangent to $\operatorname{det}^{-1}(\operatorname{det} \Sigma(0))$ iff $\operatorname{tr} \xi=0$
- But then it stays on $\operatorname{det}^{-1}(\operatorname{det} \Sigma(0))$ for all t !

Optimal crystals at fixed baryon density

- Level sets of det are totally geodesic!

Optimal crystals at fixed baryon density

- Level sets of det are totally geodesic!
- $E: \operatorname{det}^{-1}(\rho / B) \rightarrow \mathbb{R}$ is strictly convex!

Optimal crystals at fixed baryon density

- Level sets of det are totally geodesic!
- $E: \operatorname{det}^{-1}(\rho / B) \rightarrow \mathbb{R}$ is strictly convex!
- Global min is the only c.p.

Optimal crystals at fixed baryon density

Concluding remarks

- Energetically optimal soliton lattices do not necessarily have cubic (or triangular) symmetry!

Concluding remarks

- Energetically optimal soliton lattices do not necessarily have cubic (or triangular) symmetry!
- Many examples in condensed matter (cf work with Tom Winyard et al). True also for nuclear Skyrme model with massive pions

Concluding remarks

- Energetically optimal soliton lattices do not necessarily have cubic (or triangular) symmetry!
- Many examples in condensed matter (cf work with Tom Winyard et al). True also for nuclear Skyrme model with massive pions
- Extreme case: baby Skyrme model $\varphi: M^{2} \rightarrow S^{2}$

$$
E(\varphi)=\int_{M}\left(\frac{1}{2}|d \varphi|^{2}+\frac{1}{2}\left|\varphi^{*} \omega\right|^{2}+V(\varphi)\right)
$$

Given any period lattice $\Lambda \subset \mathbb{R}^{2}$, can cook up a smooth potential $V: S^{2} \rightarrow[0, \infty)$ s.t. $E(\varphi, g)$ has a global min at $\left(\varphi_{*}, g_{\Lambda}\right)$ with φ_{*} degree 2 and holomorphic.

Concluding remarks

- So this crazy lattice is the period lattice of a baby Skyrmion crystal, at least for a (highly contrived) choice of V!

Concluding remarks

- So this crazy lattice is the period lattice of a baby Skyrmion crystal, at least for a (highly contrived) choice of V !

- Existence result at fixed volume very generic

$$
E(\varphi, g)=E_{2}(\varphi, g)+\text { positive, geom nat }
$$

any dimension. Compactness argument works. E.g. ω-meson Skyrme model

