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General question

e When is a soliton on a torus

¢ :RE/N = N
a soliton crystal?
1 fermi
1 degree
1 parsec

e Clearly an artifact of b.c.s!

e (o should minimize energy E w.r.t. all variations of field and
period lattice A
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Change viewpoint

e All tori are diffeomorphic through linear maps R — RX.
o Identify them all with TX = R*/Zk, the cubic torus.

/\:{n1X1+n2X2+---+nka:neZk}

f:T3—)Rk//\, f(x):x1X1~|—x2X2+---+kak

Now mfd is fixed, but metric depends on A
gn = " geuc = gijdxidxj,  gij = X; - X; const

e Minimizing over A <> minimizing over g € SPDy
e Criticality <+ stress tensor

e Manoeuvre works provided E(y, g) is geometrically natural

E(pof,g)=E(p, (f1)g)
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Skyrme model

E : Maps(T3, SU(2)) x SPD3 — R

Two minimization problems:

e Fix g. Does E(-,g) : Maps — R attain a min in each
homotopy class?
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Skyrme model

E : Maps(T3, SU(2)) x SPD3 — R

Two minimization problems:

e Fix g. Does E(-,g) : Maps — R attain a min in each
homotopy class? YES! (at least in H! - low regularity) —
Auckly, Kapitanski

e Fix ¢? Does E(yp,-) : SPD3 — R attain a min? YES! And it's
a global min, and there are no other critical points!

J.M. Speight (University of Leeds)
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The Skyrme energy

1 L1 o
Ele.0) = [ (~5(LiL)e" - 5wl Ll LDE*E + V(o)) VIgles
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Es(g) = VIgltr(Hg™") + \/% tr(Qg) + Cov/lgl

e Constants:
e H,Q: symmetric positive semidefinite matrices
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o Nondegeneracy assumption: ¢ is C and immersive
somewhere (automatic if B # 0).
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The Skyrme energy

1 L1 o
Ele.0) = [ (~5(LiL)e" - 5wl Ll LDE*E + V(o)) VIgles
e Fix ¢ :T® — SU(2), E, : SPD; - R

_ 1
E,(g) = Vlg|tr(Hg™) + \/ﬁtr(ﬂg) + G/ 8|
e Constants:

e H,Q: symmetric positive semidefinite matrices
e C>0
o Nondegeneracy assumption: ¢ is C and immersive
somewhere (automatic if B # 0).
= H,Q € SPDs
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The Skyrme term. Really?

1
E, — _/ Prwlvoly,  weQX(G)eg
4 T3

Let volg = dxy A dxo A dx3. Isomorphism
TMeg— (NPT*M)®g, X+ ixvolg

Define X, s.t. vx,volp = p*w.

This vector field is independent of g!

Similarly, define Xg s.t. Lxgvolg = p*w

Clearly \/|g|X§ = X,
Now X& =, *gp*w, so

. 1
lp*wlz = X8|z = Eg(Xwa)
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The Skyrme term. Really?

e Hence

i
Es(g) = \/ﬁﬂij
1
Q; = Z/T3 h(X;, X;)d®x
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Existence of minimizing metrics
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Existence of minimizing metrics

< g
—tr(HZ ! Qx Yy =-—°_
E, = tr( ) +tr(QX) + —= dety 2

gk

T e
T
7 X
e f:(0,00)3 x O(3) — SPD3, f(A\,0) = 6D OT
e We will show E o f : (0,00)% x O(3) — R attains a min
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Existence of minimizing metrics

C
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A
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Existence of minimizing metrics

C
A1A2A3

(Eo f)(\, 0) =tr(0"*HODY) +tr(071Q0Dy) +

e Consider the smooth functions O(3) — (0, o)
O (07 HO) . O (071Q0).,

Since O(3) is compact, they're all bounded away from 0
e Exists a > 0 s.t. for all (X, 0),

1 1 1
(Eof)()\,ﬁ)za(A—1+>\—2+)\—3+)\1+)\2+)\3>. (%)
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Existence
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Existence

e Consider now a sequence (X,, ) s.t.

(Eof)(An, Op) = E.=infEof

e By (x) exists K > 1sit. A, € [K~1, K]3, so sequence has a
convergent subsequence (A,, 0,) — (As, Oy).

e Continuity of E implies (E o f)(As, Oy) = E,, i.e. Eof
attains a min
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Claim E has no other critical points.

E : SPD3 — R is strictly convex!

e f: M — R is strictly convex if, for all geodesics v in M,
(fFov)">0
Metric on SPD3?
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X)) = tr(z1xz )

Complete, negatively curved, unique geodesic between any
pair of points.

Invariant under GL(3,R) action & — ATAT.

e .Y — Y 1is an isometry.

Geodesic through I3: X(t) = exp(t&)
Geodesic through ¥ (0): X(t) = Aexp(t&)AT where
AAT =5(0)

J.M. Speight (University of Leeds) 12



Ex(X) = tr(QX)
Eo(5(2)) = tr(QAexp(t)AT)

= tr(Qa exp(tf)), Qa=ATQA
2

%54(2(15)) — tr(Q4€2) > 0
t=0

e So E4 is strictly convex.
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Uniqueness

Ex(X) = tr(HE 1) = (E4 0 0)(X)
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Ex(X) = tr(HE 1) = (E4 0 0)(X)

® , is an isometry, so E; is strictly convex

det : SPD3 — R is convex

Hence Ey = det ot is convex

e So E = Ey + E4 + Eg is strictly convex. Hence it has at most
one critical point. (Assume X, ¥, both cps, apply Rolle’s
Theorem to (E o) where v is the geodesic between them.)
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The numerical problem

X = —grad E(x)
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The Kugler-Shtrikman crystal (massless model)

E=E+E

(X17X27X3) = (X2’X37X1)
(0, 1,02, ¢3) = (0, P2, ¥3, ¥1)

(x1,%2,x3) = (X2, —x1, X3)
(0, 1, P2, 03) — (o, P2, —P1, P3)

(x1,x2,x3) = (x1 +1/2,x0,x3)
(QDO: ©1, P2, @3) g (_9007 —¥1, @27%03)
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The Kugler-Shtrikman crystal: turning on the pion mass

e Massless model has global SO(4) symmetry: no boundary to
break this
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The Kugler-Shtrikman crystal: turning on the pion mass

e Massless model has global SO(4) symmetry: no boundary to
break this

e Above solution ¢ks, gks = Ll3 is one point on a SO(4) orbit
of solutions

e Turn on pion mass:

E— o+t [ (1-00)VIgld
T

What happens to these critical points?

e No reason to expect degenerate critical points to survive

perturbation
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Degenerate critical points are unstable
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But they can be stabilized by symmetry!

e Say E; : X — R has nontrivial symmetry group G.
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But they can be stabilized by symmetry!

e Say E; : X — R has nontrivial symmetry group G.
e Say (degenerate) c.p. xp of Eg has stabilizer [ < G.

e Think of xg as c.p. of restriction E|: X" — R. Maybe it's
nondegenerate as a c.p. of Ey|

e Then it continues as c.p. of E|: X" = R by IFT applied to
dE;|

e Continues as c.p. of E; : X — R by PSC

e Nondegenerate = isolated.

J.M. Speight (University of Leeds) 19



Symmetry analysis

e Apply this to
E: = E + E4 + t/ (1 — goo)volg
T3

o X = C(T3,5U(2)) x SPD;
o G =S50(3) x Aut(T?)
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Symmetry analysis

e Apply this to
Eir=E+ E4 + t/ (1 = gDo)V0|g
T3

X = C2(T83, SU(2)) x SPDs
G = SO(3) x Aut(T3)

Identify points p in SO(4) orbit of (vks, gks) with isotropy
group I < G s.t.

X" N orbit = {p}

Then p is an isolated c.p. of E|X"

Reduces to a problem in representation theory of subgroups of

On
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The KS crystals that (should) survive

Rsheet‘PKS RchainSOKS
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Skyrme crystals at pion mass t = 1

Rsheet PKS Rchain‘PKS

J.M. Speight (University of Leeds) 22



Energy ordering: sheet < chain < o < KS

1.085
1.08
1.075 |
o P =R
e
1.065 a
= ¥
Z 106 /
5
1.055
105
1.045 1/ P
1/2-crystal
s —--— Sheet-crystal |
— % — Chain-crystal
1.035 . : : ;
o T s o . 7 8 9

J.M. Speight (University of Leeds)

10

L 0
8sheet = g L

0

L3> 14
Ly o0
8chain = O
0o 0

Ly >[4

trigonal, but not cubic!
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Isospin inertia tensors

165.2 0 0 1355 0 0
Uks = 0 165.2 0 , Ua= 0 1355 0 :
0 0 165.2 0 0 167.3
1358 0 0 135.6 0 0
Uigmen = 0 1358 0 o WU = 0 135.7 0
0 0 166.8 0 0 167.2

J.M. Speight (University of Leeds) 24



Optimal crystals at fixed baryon density

e Baryon density p = B//detg = Bdet¥X
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Optimal crystals at fixed baryon density

e Level sets of det are totally geodesic!
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Optimal crystals at fixed baryon density

e Level sets of det are totally geodesic!
o E:det !(p/B) — Ris strictly convex!

e Global min is the only c.p.
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Optimal

crystals at fixed baryon density
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Concluding remarks

e Energetically optimal soliton lattices do not necessarily have
cubic (or triangular) symmetry!
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Concluding remarks

e Energetically optimal soliton lattices do not necessarily have

cubic (or triangular) symmetry!

e Many examples in condensed matter (cf work with Tom
Winyard et al). True also for nuclear Skyrme model with

massive pions

e Extreme case: baby Skyrme model ¢ : M? — S?
1 2 1l *, 12
E(p) = | (Gldel”+ Sle"w" + V(p)).
M

Given any period lattice A C R?, can cook up a smooth
potential V : $2 — [0,00) s.t. E(i,g) has a global min at
(¢«, gn) with ¢, degree 2 and holomorphic.
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Concluding remarks

e So this crazy lattice is the period lattice of a baby Skyrmion
crystal, at least for a (highly contrived) choice of V!

1 fermi

1 degree

1 parsec
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Concluding remarks

e So this crazy lattice is the period lattice of a baby Skyrmion
crystal, at least for a (highly contrived) choice of V!

1 fermi

1 degree

1 parsec
e Existence result at fixed volume very generic
E(p,g) = Ex(¢, g) + positive, geom nat

any dimension. Compactness argument works. E.g. w-meson
Skyrme model
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