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Skyrme model

ϕ : (M, g)→ (G , h)

e.g. R3 → SU(2)

� ϕ(∞) = e, disjoint homotopy classes labelled by B ∈ Z
� Left-invariant Maurer-Cartan form µ ∈ Ω1(G )⊗ g

� Associated two-form ω ∈ Ω2(G )⊗ g, ω(X ,Y ) = [µ(X ), µ(Y )]

� Skyrme energy

E (ϕ) =

∫
M
|dϕ|2 +

1

4
|ϕ∗ω|2+V (ϕ)

� Faddeev bound: E (ϕ) ≥ E0|B|, unattainable

� Degree B minimizer ↔ nucleus of atomic weight B
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Skyrme model

� Numerics

Battye and Sutcliffe

� E/BE0 monotonically decreases e.g. 1.232 (B = 1), 1.096

(B = 8).
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Skyrme model

� Suggests Skyrmions may be able to form a crystal

ϕ : R3/Λ→ G , Λ = {n1X1 + n2X2 + n3X3 : n ∈ Z3}

� V = 0: Castillejo et al, Kugler et al, chose Λ = LZ3, found

B = 4 minimizer for each L > 0, minimized over L. Found ϕ

with E/BE0 = 1.036.

� But is this really a crystal? Given any Λ, B, there exists a

degree B minimizer ϕ : R3/Λ→ G (Auckly, Kapitanski).

For most Λ, lifted map R3 → G clearly isn’t a genuine

solution: artifact of bc’s.
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General question

� Given a minimizer ϕ : Rk/Λ→ N of some energy functional

E (ϕ), when is the lifted map Rk → N a genuine crystal?

� Should be critical (in fact stable) with respect to variations of

Λ too.
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Change viewpoint

� All tori are diffeomorphic through linear maps R3 → R3.

� Identify them all with M = R3/Z3, the cubic torus. Now mfd

is fixed, but metric depends on Λ
gΛ = gijdxidxj , gij = Xi · Xj const

� So now

E (ϕ, g) =

∫
T 3

(|dϕ|2g +
1

4
|ϕ∗ω|2g + V (ϕ))volg

and we want to minimize w.r.t. both ϕ ∈ C 2
B(T 3,G ) and

g ∈ SPD3 (space of symmetric positive definite 3× 3

matrices)

� Does a min exist? Dunno, but. . .

� Fix g : E (ϕ) certainly attains a min in each homotopy class

(at least in H1 - low regularity) – Auckly, Kapitanski

� What if we fix ϕ? Does E (g) attain a min?
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Existence and uniqueness of minimizing metrics

� Want to think of E , for a fixed ϕ : T 3 = R3/Z3 → G as a

function of the metric g on T 3:

Eϕ : SPD3 → R

� Theorem Let ϕ : T 3 → G be C 1 and somewhere immersive.

Then Eϕ attains a global minimum at some g∗ ∈ SPD3 and

has no other critical points.

� Proof: First note that

Eϕ(g) =
√
|g | tr(Hg−1) +

1√
|g |

tr(Ωg) + C
√
|g |

where H,Ω ∈ SPD3 and C ∈ [0,∞) are fixed.
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Existence and uniqueness of minimizing metrics

E2(g) =

∫
T 3

ϕ∗h(∂i , ∂j)g
ij
√
|g |d3x =

√
|g |g−1

ij Hij

Hij :=

∫
T 3

ϕ∗h(∂i , ∂j)d
3x

E0(g) =

∫
T 3

V (ϕ)
√
|g |d3x = C

√
|g |

C :=

∫
T 3

V (ϕ)d3x
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Existence and uniqueness of minimizing metrics

� Let vol0 = dx1 ∧ dx2 ∧ dx3. Isomorphism

TM → (Λ2T ∗M), X 7→ ιX vol0

Define Xϕ s.t. ιXϕvol0 = ϕ∗ω.

� This vector field is independent of g!

Xϕ =
√
|g | ]g ∗gϕ∗ω.

E4(g) =
1

4
‖ϕ∗ω‖2

L2(g) =
1

4

∫
T 3

1

|g |
g(Xϕ,Xϕ)volg =

gij√
|g |

Ωij

Ωij =
1

4

∫
T 3

h(Xi ,Xj)d
3x

J.M. Speight (University of Leeds) 9
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Existence and uniqueness of minimizing metrics

Eϕ(g) =
√
|g | tr(Hg−1) +

1√
|g |

tr(Ωg) + C
√
|g |

� H,Ω clearly symmetric and positive semi-definite. Hypothesis

on ϕ implies they’re positive definite.

� Define G = g/
√
|g |. Then

E : SPD3 → R, E (G ) = tr(HG−1) + tr(ΩG ) +
C

det G
.

� Surjection f : (0,∞)3 × O(3)→ SPD3

(λ,O) 7→ O

 λ1 0 0

0 λ2 0

0 0 λ3

OT = ODλOT

� We will show E ◦ f : (0,∞)3 × O(3)→ R attains a min

J.M. Speight (University of Leeds) 10
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Existence

(E ◦ f )(λ,O) = tr(H(ODλO−1)−1) + tr(ΩODλO−1) +
C

λ1λ2λ3

= tr(O−1HOD−1
λ ) + tr(O−1ΩODλ) +

C

λ1λ2λ3

� Consider the smooth functions O(3)→ (0,∞)

O 7→ (O−1HO)aa, O 7→ (O−1ΩO)aa

Since O(3) is compact, they’re all bounded away from 0

� Exists α > 0 s.t. for all (λ,O),

(E ◦ f )(λ,O) ≥ α
(

1

λ1
+

1

λ2
+

1

λ3
+ λ1 + λ2 + λ3

)
. (∗)

J.M. Speight (University of Leeds) 11
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Existence

� Consider now a sequence (λn,On) s.t.

(E ◦ f )(λn,On)→ E∗ = inf E ◦ f

� By (∗) exists K > 1 s.t. λn ∈ [K−1,K ]3, so sequence has a

convergent subsequence (λn,On)→ (λ∗,O∗).

� Continuity of E implies (E ◦ f )(λ∗,O∗) = E∗, i.e. E ◦ f
attains a min

� Let G∗ = O∗Dλ∗O
−1
∗ ∈ SPD3. Eϕ attains a min at

g∗ = G∗/ det(G∗).
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Uniqueness

� Claim E has no other critical points.

� E : SPD3 → R is strictly convex!

� f : M → R is strictly convex if, for all geodesics γ in M,

(f ◦ γ)′′ > 0

� Metric on SPD3?
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Uniqueness

‖Ġ ‖2 = tr(G−1Ġ G−1Ġ )

� Complete, negatively curved, unique geodesic between any

pair of points.

� Invariant under GL(3,R) action G 7→ AGAT .

� ι : G 7→ G−1 is an isometry.

� Geodesic through I3: G (t) = exp(tξ)

� Geodesic through G (0): G (t) = A exp(tξ)AT where

AAT = G (0)
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Uniqueness

E4(G ) = tr(ΩG )

E4(G (t)) = tr(ΩA exp(tξ)AT )

= tr(ΩA exp(tξ)), ΩA = ATΩA

d2

dt2
E4(G (t))

∣∣∣∣
t=0

= tr(ΩAξ
2) > 0

� So E4 is strictly convex.

J.M. Speight (University of Leeds) 15



Uniqueness

E2(G ) = tr(HG−1) = (Ê4 ◦ ι)(G )

� ι is an isometry, so E2 is strictly convex

� det : SPD3 → R is strictly convex

� Hence E0 = det ◦ι is strictly convex

� So E = E2 + E4 + E0 is strictly convex. Hence it has at most

one critical point. (Assume G∗, G∗∗ both cps, apply Rolle’s

Theorem to (E ◦ γ)′ where γ is the geodesic between them.)

J.M. Speight (University of Leeds) 16
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The numerical problem

� Minimize E : C 2(T 3,S3)× SPD3 → R
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The numerical problem
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M

→ R

� Newton flow: pick x(0) ∈ M, solve

ẍ = −(gradE )(x)

with ẋ(0) = 0.
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ẍ = −(gradE )(x)
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ẍ = −(gradE )(x)

with ẋ(0) = 0.

� Set ẋ(t) = 0 if 〈ẋ , gradE 〉 > 0

� Terminate when ‖ gradE‖ < tol

� Converges much faster than gradient flow.
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The Kugler-Shtrikman crystal (massless model)

E = ‖dϕ‖2 +
1

4
‖ϕ∗ω‖2

(x1, x2, x3) 7→ (x2, x3, x1)

(ϕ0, ϕ1, ϕ2, ϕ3) 7→ (ϕ0, ϕ2, ϕ3, ϕ1)

(x1, x2, x3) 7→ (x2,−x1, x3)

(ϕ0, ϕ1, ϕ2, ϕ3) 7→ (ϕ0, ϕ2,−ϕ1, ϕ3)

(x1, x2, x3) 7→ (x1 + 1/2, x2, x3)

(ϕ0, ϕ1, ϕ2, ϕ3) 7→ (−ϕ0,−ϕ1, ϕ2, ϕ3)

J.M. Speight (University of Leeds) 18



The Kugler-Shtrikman crystal: turning on the pion mass

� Massless model has global SO(4) symmetry: no boundary to

break this

� Above solution ϕKS , gKS = LI3 is one point on a SO(4) orbit

of solutions

� Turn on pion mass:

Et = E0 + t

∫
T 3

(1− ϕ0)
√
|g |d3x

What happens to these critical points?

� No reason to expect degenerate critical points to survive

perturbation

J.M. Speight (University of Leeds) 19
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An instructive toy model

Et : R2 → R, Et(x , y) = x2 + ty2

� E0 has degenerate minima at (0, y) (symmetry orbit)

� t > 0: translation symmetry broken to Γ : (x , y) 7→ (x ,−y)

� Almost all critical points of E0 disappear

� (0, 0) survives. Why? Protected by symmetry

� Restrict Et to (R2)Γ = R× {0}
� E0| has a nondegenerate critical point at (0, 0):

d∇E0| : T(0,0)(R2)Γ → T(0,0)(R2)Γ is invertible

� Solution of ∇Et | = 0 persists (for t suff small) by IFT

� Also a solution of ∇Et = 0 by PSC

J.M. Speight (University of Leeds) 20
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The case of the KS crystal

Et : C 2(T 3,S3)× SPD3︸ ︷︷ ︸
M

→ R

� E0 invariant under action of G0 = SO(4)× Aut(T 3)

� Et>0 invariant under action of G1 = SO(3)× Aut(T 3)

� Stabilizer of ϕKS in G0: Γ ∼= Oh

� Stabilizer of (R, e) · ϕKS in G1 (R ∈ SO(4)):

ΓR = (R, e)Γ(R, e)−1 ∩ [SO(3)× Aut(T 3)]

For a.e. R ∈ SO(4), ΓR = {(e, e)}
� Then MΓR = M and (R, e) · ϕKS is certainly not a

nondegenerate cp of E0|

J.M. Speight (University of Leeds) 21
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The case of the KS crystal

� For

R ∈

I4,

(
(0, 1, 1, 1)/

√
3

∗

)
︸ ︷︷ ︸

Rα

,

(
(0, 0, 0, 1)

∗

)
︸ ︷︷ ︸

Rsheet

,

(
(0, 0, 1, 1)/

√
2

∗

)
︸ ︷︷ ︸

Rchain


ΓR is nontrivial, and MΓR intersects the SO(4) orbit of ϕKS

transversely: implies (R, e) · ϕKS is an isolated cp of

E0| : MΓR → R

� Assume further that (R, e) · ϕKS is a nondegenerate cp of

E0|. IFT implies cp persists to Et>0|, t small

� PSC implies ϕ(t) also a cp of Et .
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transversely: implies (R, e) · ϕKS is an isolated cp of

E0| : MΓR → R

� Assume further that (R, e) · ϕKS is a nondegenerate cp of

E0|. IFT implies cp persists to Et>0|, t small

� PSC implies ϕ(t) also a cp of Et .
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The KS crystals that (should) survive

ϕ0 = 0.9

ϕKS RαϕKS

ϕ0 = −0.9

RsheetϕKS RchainϕKS
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Skyrme crystals at pion mass t = 1

ϕKS RαϕKS

RsheetϕKS RchainϕKS
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Energy ordering: sheet < chain < α < KS

0 1 2 3 4 5 6 7 8 9 10
1.035

1.04

1.045

1.05

1.055

1.06

1.065

1.07

1.075

1.08

1.085

gsheet =

(
L1 0 0

0 L1 0

0 0 L3

)
L3 > L1

gchain =

(
L1 0 0

0 L2 0

0 0 L2

)
L2 > L1

trigonal, but not cubic!
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Isospin inertia tensors

UKS =

165.2 0 0

0 165.2 0

0 0 165.2

 , Uα =

135.5 0 0

0 135.5 0

0 0 167.3

 ,

Usheet =

135.8 0 0

0 135.8 0

0 0 166.8

 , Uchain =

135.6 0 0

0 135.7 0

0 0 167.2

 .
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Optimal crystals at fixed baryon density

� Baryon density ρ = B√
det g

� Optimal lattice at fixed ρ? Minimize

E : C 2
B(T 3,S3)× det−1(B2/ρ2)→ R

I.e. restrict E to level set of det : SPD3 → (0,∞).

� Same argument implies (for fixed ϕ) existence of global

minimizing g

� Uniqueness argument does not apply

� Can again solve numerically by ANF

J.M. Speight (University of Leeds) 27
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Optimal crystals at fixed baryon density

J.M. Speight (University of Leeds) 28



Concluding remarks

� Energetically optimal soliton lattices do not necessarily have

cubic (or triangular) symmetry!

� Many examples in condensed matter. True also for nuclear

Skyrme model with massive pions

� Extreme case: baby Skyrme model ϕ : M2 → S2

E (ϕ) =

∫
M

(
1

2
|dϕ|2 +

1

2
|ϕ∗ω|2 + V (ϕ).

Given any period lattice Λ ⊂ R2, can cook up a smooth

potential V : S2 → [0,∞) s.t. E (ϕ, g) has a global min at

(ϕ∗, gΛ) with ϕ∗ degree 2 and holomorphic.
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Concluding remarks

� So this crazy lattice is the period lattice of a baby Skyrmion

crystal, at least for a (highly contrived) choice of V !
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