Skyrme Crystals

Martin Speight
Joint work with Derek Harland and Paul Leask
14/3/23
University of Leeds

Skyrme model

$$
\varphi:(M, g) \rightarrow(G, h)
$$

Skyrme model

$$
\varphi:(M, g) \rightarrow(G, h) \quad \text { e.g. } \mathbb{R}^{3} \rightarrow S U(2)
$$

Skyrme model

$$
\varphi:(M, g) \rightarrow(G, h) \quad \text { e.g. } \mathbb{R}^{3} \rightarrow S U(2)
$$

- $\varphi(\infty)=e$, disjoint homotopy classes labelled by $B \in \mathbb{Z}$

Skyrme model

$$
\varphi:(M, g) \rightarrow(G, h) \quad \text { e.g. } \mathbb{R}^{3} \rightarrow S U(2)
$$

- $\varphi(\infty)=e$, disjoint homotopy classes labelled by $B \in \mathbb{Z}$
- Left-invariant Maurer-Cartan form $\mu \in \Omega^{1}(G) \otimes \mathfrak{g}$

Skyrme model

$$
\varphi:(M, g) \rightarrow(G, h) \quad \text { e.g. } \mathbb{R}^{3} \rightarrow S U(2)
$$

- $\varphi(\infty)=e$, disjoint homotopy classes labelled by $B \in \mathbb{Z}$
- Left-invariant Maurer-Cartan form $\mu \in \Omega^{1}(G) \otimes \mathfrak{g}$
- Associated two-form $\omega \in \Omega^{2}(G) \otimes \mathfrak{g}, \omega(X, Y)=[\mu(X), \mu(Y)]$

Skyrme model

$$
\varphi:(M, g) \rightarrow(G, h) \quad \text { e.g. } \mathbb{R}^{3} \rightarrow S U(2)
$$

- $\varphi(\infty)=e$, disjoint homotopy classes labelled by $B \in \mathbb{Z}$
- Left-invariant Maurer-Cartan form $\mu \in \Omega^{1}(G) \otimes \mathfrak{g}$
- Associated two-form $\omega \in \Omega^{2}(G) \otimes \mathfrak{g}, \omega(X, Y)=[\mu(X), \mu(Y)]$
- Skyrme energy

$$
E(\varphi)=\int_{M}|d \varphi|^{2}+\frac{1}{4}\left|\varphi^{*} \omega\right|^{2}+V(\varphi)
$$

Skyrme model

$$
\varphi:(M, g) \rightarrow(G, h) \quad \text { e.g. } \mathbb{R}^{3} \rightarrow S U(2)
$$

- $\varphi(\infty)=e$, disjoint homotopy classes labelled by $B \in \mathbb{Z}$
- Left-invariant Maurer-Cartan form $\mu \in \Omega^{1}(G) \otimes \mathfrak{g}$
- Associated two-form $\omega \in \Omega^{2}(G) \otimes \mathfrak{g}, \omega(X, Y)=[\mu(X), \mu(Y)]$
- Skyrme energy

$$
E(\varphi)=\int_{M}|d \varphi|^{2}+\frac{1}{4}\left|\varphi^{*} \omega\right|^{2}+V(\varphi)
$$

- Faddeev bound: $E(\varphi) \geq E_{0}|B|$, unattainable
- Degree B minimizer \leftrightarrow nucleus of atomic weight B

Skyrme model

- Numerics

Battye and Sutcliffe

Skyrme model

- Numerics

Battye and Sutcliffe

- $E / B E_{0}$ monotonically decreases e.g. $1.232(B=1), 1.096$ ($B=8$).

Skyrme model

- Suggests Skyrmions may be able to form a crystal

$$
\varphi: \mathbb{R}^{3} / \Lambda \rightarrow G, \quad \Lambda=\left\{n_{1} \mathbf{X}_{1}+n_{2} \mathbf{X}_{2}+n_{3} \mathbf{X}_{3}: \mathbf{n} \in \mathbb{Z}^{3}\right\}
$$

Skyrme model

- Suggests Skyrmions may be able to form a crystal

$$
\varphi: \mathbb{R}^{3} / \Lambda \rightarrow G, \quad \Lambda=\left\{n_{1} \mathbf{X}_{1}+n_{2} \mathbf{X}_{2}+n_{3} \mathbf{X}_{3}: \mathbf{n} \in \mathbb{Z}^{3}\right\}
$$

- $V=0$: Castillejo et al, Kugler et al, chose $\Lambda=L \mathbb{Z}^{3}$, found $B=4$ minimizer for each $L>0$, minimized over L. Found φ with $E / B E_{0}=1.036$.

Skyrme model

- Suggests Skyrmions may be able to form a crystal

$$
\varphi: \mathbb{R}^{3} / \Lambda \rightarrow G, \quad \Lambda=\left\{n_{1} \mathbf{X}_{1}+n_{2} \mathbf{X}_{2}+n_{3} \mathbf{X}_{3}: \mathbf{n} \in \mathbb{Z}^{3}\right\}
$$

- $V=0$: Castillejo et al, Kugler et al, chose $\Lambda=L \mathbb{Z}^{3}$, found $B=4$ minimizer for each $L>0$, minimized over L. Found φ with $E / B E_{0}=1.036$.
- But is this really a crystal? Given any Λ, B, there exists a degree B minimizer $\varphi: \mathbb{R}^{3} / \Lambda \rightarrow G$ (Auckly, Kapitanski).

1 parsec

Skyrme model

- Suggests Skyrmions may be able to form a crystal

$$
\varphi: \mathbb{R}^{3} / \Lambda \rightarrow G, \quad \Lambda=\left\{n_{1} \mathbf{X}_{1}+n_{2} \mathbf{X}_{2}+n_{3} \mathbf{X}_{3}: \mathbf{n} \in \mathbb{Z}^{3}\right\}
$$

- $V=0$: Castillejo et al, Kugler et al, chose $\Lambda=L \mathbb{Z}^{3}$, found $B=4$ minimizer for each $L>0$, minimized over L. Found φ with $E / B E_{0}=1.036$.
- But is this really a crystal? Given any Λ, B, there exists a degree B minimizer $\varphi: \mathbb{R}^{3} / \Lambda \rightarrow G$ (Auckly, Kapitanski).

For most Λ, lifted map $\mathbb{R}^{3} \rightarrow G$ clearly isn't a genuine solution: artifact of bc's.

General question

- Given a minimizer $\varphi: \mathbb{R}^{k} / \Lambda \rightarrow N$ of some energy functional $E(\varphi)$, when is the lifted map $\mathbb{R}^{k} \rightarrow N$ a genuine crystal?

General question

- Given a minimizer $\varphi: \mathbb{R}^{k} / \Lambda \rightarrow N$ of some energy functional $E(\varphi)$, when is the lifted map $\mathbb{R}^{k} \rightarrow N$ a genuine crystal?
- Should be critical (in fact stable) with respect to variations of Λ too.

Change viewpoint

- All tori are diffeomorphic through linear maps $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$.

Change viewpoint

- All tori are diffeomorphic through linear maps $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$.
- Identify them all with $M=\mathbb{R}^{3} / \mathbb{Z}^{3}$, the cubic torus. Now mfd is fixed, but metric depends on Λ

$$
g_{\Lambda}=g_{i j} d x_{i} d x_{j}, \quad g_{i j}=\mathbf{X}_{i} \cdot \mathbf{X}_{j} \text { const }
$$

Change viewpoint

- All tori are diffeomorphic through linear maps $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$.
- Identify them all with $M=\mathbb{R}^{3} / \mathbb{Z}^{3}$, the cubic torus. Now mfd is fixed, but metric depends on Λ

$$
g_{\Lambda}=g_{i j} d x_{i} d x_{j}, \quad g_{i j}=\mathbf{X}_{i} \cdot \mathbf{X}_{j} \text { const }
$$

- So now

$$
E(\varphi, g)=\int_{T^{3}}\left(|d \varphi|_{g}^{2}+\frac{1}{4}\left|\varphi^{*} \omega\right|_{g}^{2}+V(\varphi)\right) \mathrm{vol}_{g}
$$

and we want to minimize w.r.t. both $\varphi \in C_{B}^{2}\left(T^{3}, G\right)$ and $g \in S P D_{3}$ (space of symmetric positive definite 3×3 matrices)

Change viewpoint

- All tori are diffeomorphic through linear maps $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$.
- Identify them all with $M=\mathbb{R}^{3} / \mathbb{Z}^{3}$, the cubic torus. Now mfd is fixed, but metric depends on Λ

$$
g_{\Lambda}=g_{i j} d x_{i} d x_{j}, \quad g_{i j}=\mathbf{X}_{i} \cdot \mathbf{X}_{j} \text { const }
$$

- So now

$$
E(\varphi, g)=\int_{T^{3}}\left(|d \varphi|_{g}^{2}+\frac{1}{4}\left|\varphi^{*} \omega\right|_{g}^{2}+V(\varphi)\right) \mathrm{vol}_{g}
$$

and we want to minimize w.r.t. both $\varphi \in C_{B}^{2}\left(T^{3}, G\right)$ and $g \in S P D_{3}$ (space of symmetric positive definite 3×3 matrices)

- Does a min exist? Dunno, but...

Change viewpoint

- All tori are diffeomorphic through linear maps $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$.
- Identify them all with $M=\mathbb{R}^{3} / \mathbb{Z}^{3}$, the cubic torus. Now mfd is fixed, but metric depends on Λ

$$
g_{\Lambda}=g_{i j} d x_{i} d x_{j}, \quad g_{i j}=\mathbf{X}_{i} \cdot \mathbf{X}_{j} \text { const }
$$

- So now

$$
E(\varphi, g)=\int_{T^{3}}\left(|d \varphi|_{g}^{2}+\frac{1}{4}\left|\varphi^{*} \omega\right|_{g}^{2}+V(\varphi)\right) \mathrm{vol}_{g}
$$

and we want to minimize w.r.t. both $\varphi \in C_{B}^{2}\left(T^{3}, G\right)$ and $g \in S P D_{3}$ (space of symmetric positive definite 3×3 matrices)

- Does a min exist? Dunno, but...
- Fix $g: E(\varphi)$ certainly attains a min in each homotopy class (at least in H^{1} - low regularity) - Auckly, Kapitanski

Change viewpoint

- All tori are diffeomorphic through linear maps $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$.
- Identify them all with $M=\mathbb{R}^{3} / \mathbb{Z}^{3}$, the cubic torus. Now mfd is fixed, but metric depends on Λ

$$
g_{\Lambda}=g_{i j} d x_{i} d x_{j}, \quad g_{i j}=\mathbf{X}_{i} \cdot \mathbf{X}_{j} \text { const }
$$

- So now

$$
E(\varphi, g)=\int_{T^{3}}\left(|d \varphi|_{g}^{2}+\frac{1}{4}\left|\varphi^{*} \omega\right|_{g}^{2}+V(\varphi)\right) \mathrm{vol}_{g}
$$

and we want to minimize w.r.t. both $\varphi \in C_{B}^{2}\left(T^{3}, G\right)$ and $g \in S P D_{3}$ (space of symmetric positive definite 3×3 matrices)

- Does a min exist? Dunno, but...
- Fix $g: E(\varphi)$ certainly attains a min in each homotopy class (at least in H^{1} - low regularity) - Auckly, Kapitanski
- What if we fix φ ? Does $E(g)$ attain a min?

Existence and uniqueness of minimizing metrics

- Want to think of E, for a fixed $\varphi: T^{3}=\mathbb{R}^{3} / \mathbb{Z}^{3} \rightarrow G$ as a function of the metric g on T^{3} :

$$
E_{\varphi}: S P D_{3} \rightarrow \mathbb{R}
$$

Existence and uniqueness of minimizing metrics

- Want to think of E, for a fixed $\varphi: T^{3}=\mathbb{R}^{3} / \mathbb{Z}^{3} \rightarrow G$ as a function of the metric g on T^{3} :

$$
E_{\varphi}: S P D_{3} \rightarrow \mathbb{R}
$$

- Theorem Let $\varphi: T^{3} \rightarrow G$ be C^{1} and somewhere immersive. Then E_{φ} attains a global minimum at some $g_{*} \in S P D_{3}$ and has no other critical points.

Existence and uniqueness of minimizing metrics

- Want to think of E, for a fixed $\varphi: T^{3}=\mathbb{R}^{3} / \mathbb{Z}^{3} \rightarrow G$ as a function of the metric g on T^{3} :

$$
E_{\varphi}: S P D_{3} \rightarrow \mathbb{R}
$$

- Theorem Let $\varphi: T^{3} \rightarrow G$ be C^{1} and somewhere immersive. Then E_{φ} attains a global minimum at some $g_{*} \in S P D_{3}$ and has no other critical points.
- Proof: First note that

$$
E_{\varphi}(g)=\sqrt{|g|} \operatorname{tr}\left(H g^{-1}\right)+\frac{1}{\sqrt{|g|}} \operatorname{tr}(\Omega g)+C \sqrt{|g|}
$$

where $H, \Omega \in S P D_{3}$ and $C \in[0, \infty)$ are fixed.

Existence and uniqueness of minimizing metrics

$$
\begin{aligned}
E_{2}(g) & =\int_{T^{3}} \varphi^{*} h\left(\partial_{i}, \partial_{j}\right) g^{i j} \sqrt{|g|} d^{3} x=\sqrt{|g|} g_{i j}^{-1} H_{i j} \\
H_{i j} & :=\int_{T^{3}} \varphi^{*} h\left(\partial_{i}, \partial_{j}\right) d^{3} x \\
E_{0}(g) & =\int_{T^{3}} V(\varphi) \sqrt{|g|} d^{3} x=C \sqrt{|g|} \\
C & :=\int_{T^{3}} V(\varphi) d^{3} x
\end{aligned}
$$

Existence and uniqueness of minimizing metrics

$$
\begin{aligned}
E_{2}(g) & =\int_{T^{3}} \varphi^{*} h\left(\partial_{i}, \partial_{j}\right) g^{i j} \sqrt{|g|} d^{3} x=\sqrt{|g|} g_{i j}^{-1} H_{i j} \\
H_{i j} & :=\int_{T^{3}} \varphi^{*} h\left(\partial_{i}, \partial_{j}\right) d^{3} x \\
E_{0}(g) & =\int_{T^{3}} V(\varphi) \sqrt{|g|} d^{3} x=C \sqrt{|g|} \\
C & :=\int_{T^{3}} V(\varphi) d^{3} x
\end{aligned}
$$

Existence and uniqueness of minimizing metrics

- Let vol $_{0}=d x_{1} \wedge d x_{2} \wedge d x_{3}$. Isomorphism

$$
T M \rightarrow\left(\Lambda^{2} T^{*} M\right), \quad X \mapsto \iota \times \operatorname{vol}_{0}
$$

Existence and uniqueness of minimizing metrics

- Let vol ${ }_{0}=d x_{1} \wedge d x_{2} \wedge d x_{3}$. Isomorphism

$$
T M \otimes \mathfrak{g} \rightarrow\left(\Lambda^{2} T^{*} M\right) \otimes \mathfrak{g}, \quad X \mapsto \iota X \text { vol }_{0}
$$

Define X_{φ} s.t. ιX_{φ} vol $_{0}=\varphi^{*} \omega$.

Existence and uniqueness of minimizing metrics

- Let vol $_{0}=d x_{1} \wedge d x_{2} \wedge d x_{3}$. Isomorphism

$$
T M \otimes \mathfrak{g} \rightarrow\left(\Lambda^{2} T^{*} M\right) \otimes \mathfrak{g}, \quad X \mapsto \iota X \text { vol }_{0}
$$

Define X_{φ} s.t. $\iota \chi_{\varphi} \operatorname{vol}_{0}=\varphi^{*} \omega$.

- This vector field is independent of g !

Existence and uniqueness of minimizing metrics

- Let vol $_{0}=d x_{1} \wedge d x_{2} \wedge d x_{3}$. Isomorphism

$$
T M \otimes \mathfrak{g} \rightarrow\left(\Lambda^{2} T^{*} M\right) \otimes \mathfrak{g}, \quad X \mapsto \iota X \text { vol }_{0}
$$

Define X_{φ} s.t. $\iota \chi_{\varphi} \operatorname{vol}_{0}=\varphi^{*} \omega$.

- This vector field is independent of g !

$$
X_{\varphi}=\sqrt{|g|} \not \sharp_{g} *_{g} \varphi^{*} \omega
$$

Existence and uniqueness of minimizing metrics

- Let vol $_{0}=d x_{1} \wedge d x_{2} \wedge d x_{3}$. Isomorphism

$$
T M \otimes \mathfrak{g} \rightarrow\left(\Lambda^{2} T^{*} M\right) \otimes \mathfrak{g}, \quad X \mapsto \iota_{X} \text { vol }_{0}
$$

Define X_{φ} s.t. $\iota_{X_{\varphi}}$ vol $_{0}=\varphi^{*} \omega$.

- This vector field is independent of g !

$$
\begin{gathered}
X_{\varphi}=\sqrt{|g|} \sharp g *_{g} \varphi^{*} \omega . \\
E_{4}(g)=\frac{1}{4}\left\|\varphi^{*} \omega\right\|_{L^{2}(g)}^{2}=\frac{1}{4} \int_{T^{3}} \frac{1}{|g|} g\left(X_{\varphi}, X_{\varphi}\right) \operatorname{vol}_{g}=\frac{g_{i j}}{\sqrt{|g|}} \Omega_{i j} \\
\Omega_{i j}=\frac{1}{4} \int_{T^{3}} h\left(X_{i}, X_{j}\right) d^{3} x
\end{gathered}
$$

Existence and uniqueness of minimizing metrics

$$
E_{\varphi}(g)=\sqrt{|g|} \operatorname{tr}\left(H^{-1}\right)+\frac{1}{\sqrt{|g|}} \operatorname{tr}(\Omega g)+C \sqrt{|g|}
$$

- H, Ω clearly symmetric and positive semi-definite. Hypothesis on φ implies they're positive definite.

Existence and uniqueness of minimizing metrics

$$
E_{\varphi}(g)=\sqrt{|g|} \operatorname{tr}\left(H g^{-1}\right)+\frac{1}{\sqrt{|g|}} \operatorname{tr}(\Omega g)+C \sqrt{|g|}
$$

- H, Ω clearly symmetric and positive semi-definite. Hypothesis on φ implies they're positive definite.
- Define $\mathscr{G}=g / \sqrt{|g|}$. Then

$$
E: S P D_{3} \rightarrow \mathbb{R}, \quad E(\mathscr{G})=\operatorname{tr}\left(H \mathscr{G}^{-1}\right)+\operatorname{tr}(\Omega \mathscr{G})+\frac{C}{\operatorname{det} \mathscr{G}} .
$$

Existence and uniqueness of minimizing metrics

$$
E_{\varphi}(g)=\sqrt{|g|} \operatorname{tr}\left(H g^{-1}\right)+\frac{1}{\sqrt{|g|}} \operatorname{tr}(\Omega g)+C \sqrt{|g|}
$$

- H, Ω clearly symmetric and positive semi-definite. Hypothesis on φ implies they're positive definite.
- Define $\mathscr{G}=g / \sqrt{|g|}$. Then

$$
E: S P D_{3} \rightarrow \mathbb{R}, \quad E(\mathscr{G})=\operatorname{tr}\left(H \mathscr{G}^{-1}\right)+\operatorname{tr}(\Omega \mathscr{G})+\frac{C}{\operatorname{det} \mathscr{G}} .
$$

- Surjection $f:(0, \infty)^{3} \times O(3) \rightarrow S P D_{3}$

$$
(\lambda, \mathscr{O}) \mapsto \mathscr{O}\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right) \mathscr{O}^{T}=\mathscr{O} D_{\lambda} \mathscr{O}^{T}
$$

Existence and uniqueness of minimizing metrics

$$
E_{\varphi}(g)=\sqrt{|g|} \operatorname{tr}\left(H^{-1}\right)+\frac{1}{\sqrt{|g|}} \operatorname{tr}(\Omega g)+C \sqrt{|g|}
$$

- H, Ω clearly symmetric and positive semi-definite. Hypothesis on φ implies they're positive definite.
- Define $\mathscr{G}=g / \sqrt{|g|}$. Then

$$
E: S P D_{3} \rightarrow \mathbb{R}, \quad E(\mathscr{G})=\operatorname{tr}\left(H \mathscr{G}^{-1}\right)+\operatorname{tr}(\Omega \mathscr{G})+\frac{C}{\operatorname{det} \mathscr{G}} .
$$

- Surjection $f:(0, \infty)^{3} \times O(3) \rightarrow S P D_{3}$

$$
(\lambda, \mathscr{O}) \mapsto \mathscr{O}\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right) \mathscr{O}^{T}=\mathscr{O} D_{\lambda} \mathscr{O}^{T}
$$

J.M. SpeghWenivillishoffeeds) $f:(0, \infty)^{3} \times O(3) \rightarrow \mathbb{R}$ attains a min

Existence

$$
\begin{aligned}
(E \circ f)(\lambda, \mathscr{O}) & =\operatorname{tr}\left(H\left(\mathscr{O} D_{\lambda} \mathscr{O}^{-1}\right)^{-1}\right)+\operatorname{tr}\left(\Omega \mathscr{O} D_{\lambda} \mathscr{O}^{-1}\right)+\frac{C}{\lambda_{1} \lambda_{2} \lambda_{3}} \\
& =\operatorname{tr}\left(\mathscr{O}^{-1} H \mathscr{O} D_{\lambda}^{-1}\right)+\operatorname{tr}\left(\mathscr{O}^{-1} \Omega \mathscr{O} D_{\lambda}\right)+\frac{C}{\lambda_{1} \lambda_{2} \lambda_{3}}
\end{aligned}
$$

Existence

$$
\begin{aligned}
(E \circ f)(\lambda, \mathscr{O}) & =\operatorname{tr}\left(H\left(\mathscr{O} D_{\lambda} \mathscr{O}^{-1}\right)^{-1}\right)+\operatorname{tr}\left(\Omega \mathscr{O} D_{\lambda} \mathscr{O}^{-1}\right)+\frac{C}{\lambda_{1} \lambda_{2} \lambda_{3}} \\
& =\operatorname{tr}\left(\mathscr{O}^{-1} H \mathscr{O} D_{\lambda}^{-1}\right)+\operatorname{tr}\left(\mathscr{O}^{-1} \Omega \mathscr{O} D_{\lambda}\right)+\frac{C}{\lambda_{1} \lambda_{2} \lambda_{3}}
\end{aligned}
$$

- Consider the smooth functions $O(3) \rightarrow(0, \infty)$

$$
\mathscr{O} \mapsto\left(\mathscr{O}^{-1} H \mathscr{O}\right)_{a a}, \quad \mathscr{O} \mapsto\left(\mathscr{O}^{-1} \Omega \mathscr{O}\right)_{a a}
$$

Since $O(3)$ is compact, they're all bounded away from 0

Existence

$$
\begin{aligned}
(E \circ f)(\lambda, \mathscr{O}) & =\operatorname{tr}\left(H\left(\mathscr{O} D_{\lambda} \mathscr{O}^{-1}\right)^{-1}\right)+\operatorname{tr}\left(\Omega \mathscr{O} D_{\lambda} \mathscr{O}^{-1}\right)+\frac{C}{\lambda_{1} \lambda_{2} \lambda_{3}} \\
& =\operatorname{tr}\left(\mathscr{O}^{-1} H \mathscr{O} D_{\lambda}^{-1}\right)+\operatorname{tr}\left(\mathscr{O}^{-1} \Omega \mathscr{O} D_{\lambda}\right)+\frac{C}{\lambda_{1} \lambda_{2} \lambda_{3}}
\end{aligned}
$$

- Consider the smooth functions $O(3) \rightarrow(0, \infty)$

$$
\mathscr{O} \mapsto\left(\mathscr{O}^{-1} H \mathscr{O}\right)_{a a}, \quad \mathscr{O} \mapsto\left(\mathscr{O}^{-1} \Omega \mathscr{O}\right)_{a a}
$$

Since $O(3)$ is compact, they're all bounded away from 0

- Exists $\alpha>0$ st. for all $(\boldsymbol{\lambda}, \mathscr{O})$,

$$
\begin{equation*}
(E \circ f)(\boldsymbol{\lambda}, \mathscr{O}) \geq \alpha\left(\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}+\lambda_{1}+\lambda_{2}+\lambda_{3}\right) . \tag{*}
\end{equation*}
$$

Existence

- Consider now a sequence $\left(\boldsymbol{\lambda}_{n}, \mathscr{O}_{n}\right)$ s.t.

$$
(E \circ f)\left(\lambda_{n}, \mathscr{O}_{n}\right) \rightarrow E_{*}=\inf E \circ f
$$

Existence

- Consider now a sequence $\left(\boldsymbol{\lambda}_{n}, \mathscr{O}_{n}\right)$ s.t.

$$
(E \circ f)\left(\lambda_{n}, \mathscr{O}_{n}\right) \rightarrow E_{*}=\inf E \circ f
$$

- By $(*)$ exists $K>1$ s.t. $\boldsymbol{\lambda}_{n} \in\left[K^{-1}, K\right]^{3}$, so sequence has a convergent subsequence $\left(\lambda_{n}, \mathscr{O}_{n}\right) \rightarrow\left(\lambda_{*}, \mathscr{O}_{*}\right)$.

Existence

- Consider now a sequence $\left(\boldsymbol{\lambda}_{n}, \mathscr{O}_{n}\right)$ s.t.

$$
(E \circ f)\left(\lambda_{n}, \mathscr{O}_{n}\right) \rightarrow E_{*}=\inf E \circ f
$$

- By $(*)$ exists $K>1$ s.t. $\boldsymbol{\lambda}_{n} \in\left[K^{-1}, K\right]^{3}$, so sequence has a convergent subsequence $\left(\lambda_{n}, \mathscr{O}_{n}\right) \rightarrow\left(\boldsymbol{\lambda}_{*}, \mathscr{O}_{*}\right)$.
- Continuity of E implies $(E \circ f)\left(\boldsymbol{\lambda}_{*}, \mathscr{O}_{*}\right)=E_{*}$, i.e. $E \circ f$ attains a min

Existence

- Consider now a sequence $\left(\boldsymbol{\lambda}_{n}, \mathscr{O}_{n}\right)$ s.t.

$$
(E \circ f)\left(\boldsymbol{\lambda}_{n}, \mathscr{O}_{n}\right) \rightarrow E_{*}=\inf E \circ f
$$

- By $(*)$ exists $K>1$ s.t. $\boldsymbol{\lambda}_{n} \in\left[K^{-1}, K\right]^{3}$, so sequence has a convergent subsequence $\left(\lambda_{n}, \mathscr{O}_{n}\right) \rightarrow\left(\boldsymbol{\lambda}_{*}, \mathscr{O}_{*}\right)$.
- Continuity of E implies $(E \circ f)\left(\boldsymbol{\lambda}_{*}, \mathscr{O}_{*}\right)=E_{*}$, i.e. $E \circ f$ attains a min
- Let $\mathscr{G}_{*}=\mathscr{O}_{*} D_{\lambda_{*}} \mathscr{O}_{*}^{-1} \in S P D_{3}$. E_{φ} attains a min at $g_{*}=\mathscr{G}_{*} / \operatorname{det}\left(\mathscr{G}_{*}\right)$.

Uniqueness

- Claim E has no other critical points.

Uniqueness

- Claim E has no other critical points.
- $E: S P D_{3} \rightarrow \mathbb{R}$ is strictly convex!

Uniqueness

- Claim E has no other critical points.
- $E: S P D_{3} \rightarrow \mathbb{R}$ is strictly convex!
- $f: M \rightarrow \mathbb{R}$ is strictly convex if, for all geodesics γ in M, $(f \circ \gamma)^{\prime \prime}>0$

Uniqueness

- Claim E has no other critical points.
- $E: S P D_{3} \rightarrow \mathbb{R}$ is strictly convex!
- $f: M \rightarrow \mathbb{R}$ is strictly convex if, for all geodesics γ in M, $(f \circ \gamma)^{\prime \prime}>0$
- Metric on $S P D_{3}$?

Uniqueness

$$
\|\dot{\mathscr{G}}\|^{2}=\operatorname{tr}\left(\mathscr{G}^{-1} \dot{\mathscr{G}} \mathscr{G}^{-1} \dot{\mathscr{G}}\right)
$$

Uniqueness

$$
\|\dot{\mathscr{G}}\|^{2}=\operatorname{tr}\left(\mathscr{G}^{-1} \dot{\mathscr{G}} \mathscr{\mathscr { G }}{ }^{-1} \dot{\mathscr{G}}\right)
$$

- Complete, negatively curved, unique geodesic between any pair of points.

Uniqueness

$$
\|\dot{\mathscr{G}}\|^{2}=\operatorname{tr}\left(\mathscr{G}^{-1} \dot{\mathscr{G}} \dot{\mathscr{G}}{ }^{-1} \dot{\mathscr{G}}\right)
$$

- Complete, negatively curved, unique geodesic between any pair of points.
- Invariant under $G L(3, \mathbb{R})$ action $\mathscr{G} \mapsto A \mathscr{G} A^{T}$.

Uniqueness

$$
\|\dot{\mathscr{G}}\|^{2}=\operatorname{tr}\left(\mathscr{G}^{-1} \dot{\mathscr{G}} \dot{\mathscr{G}}{ }^{-1} \dot{\mathscr{G}}\right)
$$

- Complete, negatively curved, unique geodesic between any pair of points.
- Invariant under $G L(3, \mathbb{R})$ action $\mathscr{G} \mapsto A \mathscr{G} A^{T}$.
- $\iota: \mathscr{G} \mapsto \mathscr{G}^{-1}$ is an isometry.

Uniqueness

$$
\|\dot{\mathscr{G}}\|^{2}=\operatorname{tr}\left(\mathscr{G}^{-1} \dot{\mathscr{G}} \mathscr{G}-1 \dot{\mathscr{G}}\right)
$$

- Complete, negatively curved, unique geodesic between any pair of points.
- Invariant under $G L(3, \mathbb{R})$ action $\mathscr{G} \mapsto A \mathscr{G} A^{T}$.
- $\iota: \mathscr{G} \mapsto \mathscr{G}^{-1}$ is an isometry.
- Geodesic through $\mathbb{I}_{3}: \mathscr{G}(t)=\exp (t \xi)$

Uniqueness

$$
\|\dot{\mathscr{G}}\|^{2}=\operatorname{tr}\left(\mathscr{G}^{-1} \dot{\mathscr{G}} \mathscr{G}-1 \dot{\mathscr{G}}\right)
$$

- Complete, negatively curved, unique geodesic between any pair of points.
- Invariant under $G L(3, \mathbb{R})$ action $\mathscr{G} \mapsto A \mathscr{G} A^{T}$.
- $\iota: \mathscr{G} \mapsto \mathscr{G}^{-1}$ is an isometry.
- Geodesic through $\mathbb{I}_{3}: \mathscr{G}(t)=\exp (t \xi)$
- Geodesic through $\mathscr{G}(0): \mathscr{G}(t)=A \exp (t \xi) A^{T}$ where $A A^{T}=\mathscr{G}(0)$

Uniqueness

$$
\begin{aligned}
E_{4}(\mathscr{G}) & =\operatorname{tr}(\Omega \mathscr{G}) \\
E_{4}(\mathscr{G}(t)) & =\operatorname{tr}\left(\Omega A \exp (t \xi) A^{T}\right) \\
& =\operatorname{tr}\left(\Omega_{A} \exp (t \xi)\right), \quad \Omega_{A}=A^{T} \Omega A \\
\left.\frac{d^{2}}{d t^{2}} E_{4}(\mathscr{G}(t))\right|_{t=0} & =\operatorname{tr}\left(\Omega_{A} \xi^{2}\right)>0
\end{aligned}
$$

- So E_{4} is strictly convex.

Uniqueness

$$
E_{2}(\mathscr{G})=\operatorname{tr}\left(H \mathscr{G}^{-1}\right)=\left(\widehat{E}_{4} \circ \iota\right)(\mathscr{G})
$$

Uniqueness

$$
E_{2}(\mathscr{G})=\operatorname{tr}\left(H \mathscr{G}^{-1}\right)=\left(\widehat{E}_{4} \circ \iota\right)(\mathscr{G})
$$

- ι is an isometry, so E_{2} is strictly convex

Uniqueness

$$
E_{2}(\mathscr{G})=\operatorname{tr}\left(H \mathscr{G}^{-1}\right)=\left(\hat{E}_{4} \circ \iota\right)(\mathscr{G})
$$

- ι is an isometry, so E_{2} is strictly convex
- det : $S P D_{3} \rightarrow \mathbb{R}$ is strictly convex

Uniqueness

$$
E_{2}(\mathscr{G})=\operatorname{tr}\left(H \mathscr{G}^{-1}\right)=\left(\hat{E}_{4} \circ \iota\right)(\mathscr{G})
$$

- ι is an isometry, so E_{2} is strictly convex
- det : $S P D_{3} \rightarrow \mathbb{R}$ is strictly convex
- Hence $E_{0}=$ deto८ is strictly convex

Uniqueness

$$
E_{2}(\mathscr{G})=\operatorname{tr}\left(H \mathscr{G}^{-1}\right)=\left(\widehat{E}_{4} \circ \iota\right)(\mathscr{G})
$$

- ι is an isometry, so E_{2} is strictly convex
- det : $S P D_{3} \rightarrow \mathbb{R}$ is strictly convex
- Hence $E_{0}=$ deto८ is strictly convex
- So $E=E_{2}+E_{4}+E_{0}$ is strictly convex. Hence it has at most one critical point. (Assume $\mathscr{G}_{*}, \mathscr{G}_{* *}$ both cps, apply Rolle's Theorem to $(E \circ \gamma)^{\prime}$ where γ is the geodesic between them.)

The numerical problem

- Minimize $E: C^{2}\left(T^{3}, S^{3}\right) \times S P D_{3} \rightarrow \mathbb{R}$

The numerical problem

- Minimize $E: \underbrace{C^{2}\left(T^{3}, S^{3}\right) \times S P D_{3}}_{M} \rightarrow \mathbb{R}$

The numerical problem

- Minimize $E: \underbrace{C^{2}\left(T^{3}, S^{3}\right) \times S P D_{3}}_{M} \rightarrow \mathbb{R}$
- Newton flow: pick $x(0) \in M$, solve

$$
\ddot{x}=-(\operatorname{grad} E)(x)
$$

with $\dot{x}(0)=0$.

The numerical problem

- Minimize $E: \underbrace{C^{2}\left(T^{3}, S^{3}\right) \times S P D_{3}}_{M} \rightarrow \mathbb{R}$
- Arrested Newton flow: pick $x(0) \in M$, solve

$$
\ddot{x}=-(\operatorname{grad} E)(x)
$$

with $\dot{x}(0)=0$.

- Set $\dot{x}(t)=0$ if $\langle\dot{x}, \operatorname{grad} E\rangle>0$

The numerical problem

- Minimize $E: \underbrace{C^{2}\left(T^{3}, S^{3}\right) \times S P D_{3}}_{M} \rightarrow \mathbb{R}$
- Arrested Newton flow: pick $x(0) \in M$, solve

$$
\ddot{x}=-(\operatorname{grad} E)(x)
$$

with $\dot{x}(0)=0$.

- Set $\dot{x}(t)=0$ if $\langle\dot{x}, \operatorname{grad} E\rangle>0$
- Terminate when $\|\operatorname{grad} E\|<$ tol

The numerical problem

- Minimize $E: \underbrace{C^{2}\left(T^{3}, S^{3}\right) \times S P D_{3}}_{M} \rightarrow \mathbb{R}$
- Arrested Newton flow: pick $x(0) \in M$, solve

$$
\ddot{x}=-(\operatorname{grad} E)(x)
$$

with $\dot{x}(0)=0$.

- Set $\dot{x}(t)=0$ if $\langle\dot{x}, \operatorname{grad} E\rangle>0$
- Terminate when $\|\operatorname{grad} E\|<t o l$
- Converges much faster than gradient flow.

The Kugler-Shtrikman crystal (massless model)

$$
E=\|d \varphi\|^{2}+\frac{1}{4}\left\|\varphi^{*} \omega\right\|^{2}
$$

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{3}\right) & \mapsto\left(x_{2}, x_{3}, x_{1}\right) \\
\left(\varphi_{0}, \varphi_{1}, \varphi_{2}, \varphi_{3}\right) & \mapsto\left(\varphi_{0}, \varphi_{2}, \varphi_{3}, \varphi_{1}\right) \\
\left(x_{1}, x_{2}, x_{3}\right) & \mapsto\left(x_{2},-x_{1}, x_{3}\right) \\
\left(\varphi_{0}, \varphi_{1}, \varphi_{2}, \varphi_{3}\right) & \mapsto\left(\varphi_{0}, \varphi_{2},-\varphi_{1}, \varphi_{3}\right) \\
\left(x_{1}, x_{2}, x_{3}\right) & \mapsto\left(x_{1}+1 / 2, x_{2}, x_{3}\right) \\
\left(\varphi_{0}, \varphi_{1}, \varphi_{2}, \varphi_{3}\right) & \mapsto\left(-\varphi_{0},-\varphi_{1}, \varphi_{2}, \varphi_{3}\right)
\end{aligned}
$$

The Kugler-Shtrikman crystal: turning on the pion mass

- Massless model has global $S O(4)$ symmetry: no boundary to break this

The Kugler-Shtrikman crystal: turning on the pion mass

- Massless model has global $S O(4)$ symmetry: no boundary to break this
- Above solution $\varphi_{K S}, g_{K S}=L \mathbb{I}_{3}$ is one point on a $S O(4)$ orbit of solutions

The Kugler-Shtrikman crystal: turning on the pion mass

- Massless model has global $S O(4)$ symmetry: no boundary to break this
- Above solution $\varphi_{K S}, g_{K S}=L \mathbb{I}_{3}$ is one point on a $S O(4)$ orbit of solutions
- Turn on pion mass:

$$
E_{t}=E_{0}+t \int_{T^{3}}\left(1-\varphi_{0}\right) \sqrt{|g|} d^{3} x
$$

What happens to these critical points?

The Kugler-Shtrikman crystal: turning on the pion mass

- Massless model has global $S O(4)$ symmetry: no boundary to break this
- Above solution $\varphi_{K S}, g_{K S}=L \mathbb{I}_{3}$ is one point on a $S O(4)$ orbit of solutions
- Turn on pion mass:

$$
E_{t}=E_{0}+t \int_{T^{3}}\left(1-\varphi_{0}\right) \sqrt{|g|} d^{3} x
$$

What happens to these critical points?

- No reason to expect degenerate critical points to survive perturbation

An instructive toy model

$$
E_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad E_{t}(x, y)=x^{2}+t y^{2}
$$

- E_{0} has degenerate minima at $(0, y)$ (symmetry orbit)

An instructive toy model

$$
E_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad E_{t}(x, y)=x^{2}+t y^{2}
$$

- E_{0} has degenerate minima at $(0, y)$ (symmetry orbit)
- $t>0$: translation symmetry broken to $\Gamma:(x, y) \mapsto(x,-y)$

An instructive toy model

$$
E_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad E_{t}(x, y)=x^{2}+t y^{2}
$$

- E_{0} has degenerate minima at $(0, y)$ (symmetry orbit)
- $t>0$: translation symmetry broken to $\Gamma:(x, y) \mapsto(x,-y)$
- Almost all critical points of E_{0} disappear

An instructive toy model

$$
E_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad E_{t}(x, y)=x^{2}+t y^{2}
$$

- E_{0} has degenerate minima at $(0, y)$ (symmetry orbit)
- $t>0$: translation symmetry broken to $\Gamma:(x, y) \mapsto(x,-y)$
- Almost all critical points of E_{0} disappear
- $(0,0)$ survives. Why? Protected by symmetry

An instructive toy model

$$
E_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad E_{t}(x, y)=x^{2}+t y^{2}
$$

- E_{0} has degenerate minima at $(0, y)$ (symmetry orbit)
- $t>0$: translation symmetry broken to $\Gamma:(x, y) \mapsto(x,-y)$
- Almost all critical points of E_{0} disappear
- $(0,0)$ survives. Why? Protected by symmetry
- Restrict E_{t} to $\left(\mathbb{R}^{2}\right)^{\Gamma}=\mathbb{R} \times\{0\}$

An instructive toy model

$$
E_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad E_{t}(x, y)=x^{2}+t y^{2}
$$

- E_{0} has degenerate minima at $(0, y)$ (symmetry orbit)
- $t>0$: translation symmetry broken to $\Gamma:(x, y) \mapsto(x,-y)$
- Almost all critical points of E_{0} disappear
- $(0,0)$ survives. Why? Protected by symmetry
- Restrict E_{t} to $\left(\mathbb{R}^{2}\right)^{\Gamma}=\mathbb{R} \times\{0\}$
- $E_{0} \mid$ has a nondegenerate critical point at $(0,0)$:

$$
d \nabla E_{0} \mid: T_{(0,0)}\left(\mathbb{R}^{2}\right)^{\ulcorner } \rightarrow T_{(0,0)}\left(\mathbb{R}^{2}\right)^{\ulcorner } \quad \text { is invertible }
$$

An instructive toy model

$$
E_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad E_{t}(x, y)=x^{2}+t y^{2}
$$

- E_{0} has degenerate minima at $(0, y)$ (symmetry orbit)
- $t>0$: translation symmetry broken to $\Gamma:(x, y) \mapsto(x,-y)$
- Almost all critical points of E_{0} disappear
- $(0,0)$ survives. Why? Protected by symmetry
- Restrict E_{t} to $\left(\mathbb{R}^{2}\right)^{\Gamma}=\mathbb{R} \times\{0\}$
- $E_{0} \mid$ has a nondegenerate critical point at $(0,0)$:

$$
d \nabla E_{0} \mid: T_{(0,0)}\left(\mathbb{R}^{2}\right)^{\ulcorner } \rightarrow T_{(0,0)}\left(\mathbb{R}^{2}\right)^{\ulcorner } \quad \text { is invertible }
$$

- Solution of $\nabla E_{t} \mid=0$ persists (for t suff small) by IFT

An instructive toy model

$$
E_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad E_{t}(x, y)=x^{2}+t y^{2}
$$

- E_{0} has degenerate minima at $(0, y)$ (symmetry orbit)
- $t>0$: translation symmetry broken to $\Gamma:(x, y) \mapsto(x,-y)$
- Almost all critical points of E_{0} disappear
- $(0,0)$ survives. Why? Protected by symmetry
- Restrict E_{t} to $\left(\mathbb{R}^{2}\right)^{\Gamma}=\mathbb{R} \times\{0\}$
- $E_{0} \mid$ has a nondegenerate critical point at $(0,0)$:

$$
d \nabla E_{0} \mid: T_{(0,0)}\left(\mathbb{R}^{2}\right)^{\ulcorner } \rightarrow T_{(0,0)}\left(\mathbb{R}^{2}\right)^{\ulcorner } \quad \text { is invertible }
$$

- Solution of $\nabla E_{t} \mid=0$ persists (for t suff small) by IFT
- Also a solution of $\nabla E_{t}=0$ by PSC

The case of the KS crystal

$$
E_{t}: \underbrace{C^{2}\left(T^{3}, S^{3}\right) \times S P D_{3}}_{M} \rightarrow \mathbb{R}
$$

- E_{0} invariant under action of $G_{0}=S O(4) \times \operatorname{Aut}\left(T^{3}\right)$

The case of the KS crystal

$$
E_{t}: \underbrace{C^{2}\left(T^{3}, S^{3}\right) \times S P D_{3}}_{M} \rightarrow \mathbb{R}
$$

- E_{0} invariant under action of $G_{0}=S O(4) \times \operatorname{Aut}\left(T^{3}\right)$
- $E_{t>0}$ invariant under action of $G_{1}=S O(3) \times \operatorname{Aut}\left(T^{3}\right)$

The case of the KS crystal

$$
E_{t}: \underbrace{C^{2}\left(T^{3}, S^{3}\right) \times S P D_{3}}_{M} \rightarrow \mathbb{R}
$$

- E_{0} invariant under action of $G_{0}=S O(4) \times \operatorname{Aut}\left(T^{3}\right)$
- $E_{t>0}$ invariant under action of $G_{1}=S O(3) \times \operatorname{Aut}\left(T^{3}\right)$
- Stabilizer of $\varphi_{K S}$ in $G_{0}: \Gamma \cong O_{h}$

The case of the KS crystal

$$
E_{t}: \underbrace{C^{2}\left(T^{3}, S^{3}\right) \times S P D_{3}}_{M} \rightarrow \mathbb{R}
$$

- E_{0} invariant under action of $G_{0}=S O(4) \times \operatorname{Aut}\left(T^{3}\right)$
- $E_{t>0}$ invariant under action of $G_{1}=S O(3) \times \operatorname{Aut}\left(T^{3}\right)$
- Stabilizer of $\varphi_{K S}$ in $G_{0}: \Gamma \cong O_{h}$
- Stabilizer of $(R, e) \cdot \varphi_{K S}$ in $G_{1}(R \in S O(4))$:

$$
\Gamma_{R}=(R, e) \Gamma(R, e)^{-1} \cap\left[S O(3) \times \operatorname{Aut}\left(T^{3}\right)\right]
$$

For a.e. $R \in S O(4), \Gamma_{R}=\{(e, e)\}$

The case of the KS crystal

$$
E_{t}: \underbrace{C^{2}\left(T^{3}, S^{3}\right) \times S P D_{3}}_{M} \rightarrow \mathbb{R}
$$

- E_{0} invariant under action of $G_{0}=S O(4) \times \operatorname{Aut}\left(T^{3}\right)$
- $E_{t>0}$ invariant under action of $G_{1}=S O(3) \times \operatorname{Aut}\left(T^{3}\right)$
- Stabilizer of $\varphi_{K S}$ in $G_{0}: \Gamma \cong O_{h}$
- Stabilizer of $(R, e) \cdot \varphi_{K S}$ in $G_{1}(R \in S O(4))$:

$$
\Gamma_{R}=(R, e) \Gamma(R, e)^{-1} \cap\left[S O(3) \times \operatorname{Aut}\left(T^{3}\right)\right]
$$

For a.e. $R \in S O(4), \Gamma_{R}=\{(e, e)\}$

- Then $M^{\Gamma} R=M$ and $(R, e) \cdot \varphi_{K S}$ is certainly not a nondegenerate cp of $E_{0} \mid$

The case of the KS crystal

- For

$$
R \in\{\mathbb{I}_{4}, \underbrace{\binom{(0,1,1,1) / \sqrt{3}}{*}}_{R_{\alpha}}, \underbrace{\binom{(0,0,0,1)}{*}}_{R_{\text {sheet }}}, \underbrace{\binom{(0,0,1,1) / \sqrt{2}}{*}}_{R_{\text {chain }}}\}
$$

Γ_{R} is nontrivial, and $M^{\Gamma_{R}}$ intersects the $S O(4)$ orbit of $\varphi_{K S}$ transversely: implies $(R, e) \cdot \varphi_{K S}$ is an isolated cp of $E_{0} \mid: M^{\ulcorner R} \rightarrow \mathbb{R}$

The case of the KS crystal

- For

$$
R \in\{\mathbb{I}_{4}, \underbrace{\binom{(0,1,1,1) / \sqrt{3}}{*}}_{R_{\alpha}}, \underbrace{\binom{(0,0,0,1)}{*}}_{R_{\text {sheet }}}, \underbrace{\binom{(0,0,1,1) / \sqrt{2}}{*}}_{R_{\text {chain }}}\}
$$

Γ_{R} is nontrivial, and $M^{\Gamma_{R}}$ intersects the $S O(4)$ orbit of $\varphi_{K S}$ transversely: implies $(R, e) \cdot \varphi_{K S}$ is an isolated cp of
$E_{0} \mid: M^{\Gamma} \rightarrow \mathbb{R}$

- Assume further that $(R, e) \cdot \varphi_{K S}$ is a nondegenerate cp of $E_{0} \mid$. IFT implies cp persists to $E_{t>0} \mid, t$ small

The case of the KS crystal

- For

$$
R \in\{\mathbb{I}_{4}, \underbrace{\binom{(0,1,1,1) / \sqrt{3}}{*}}_{R_{\alpha}}, \underbrace{\binom{(0,0,0,1)}{*}}_{R_{\text {sheet }}}, \underbrace{\binom{(0,0,1,1) / \sqrt{2}}{*}}_{R_{\text {chain }}}\}
$$

Γ_{R} is nontrivial, and $M^{\Gamma_{R}}$ intersects the $S O(4)$ orbit of $\varphi_{K S}$ transversely: implies $(R, e) \cdot \varphi_{K S}$ is an isolated cp of
$E_{0} \mid: M^{\Gamma} \rightarrow \mathbb{R}$

- Assume further that $(R, e) \cdot \varphi_{K S}$ is a nondegenerate cp of $E_{0} \mid$. IFT implies cp persists to $E_{t>0} \mid, t$ small
- PSC implies $\varphi(t)$ also a cp of E_{t}.

The KS crystals that (should) survive

$$
\varphi_{0}=0.9
$$

$R_{\text {sheet }} \varphi_{K S}$

$$
\varphi_{0}=-0.9
$$

$R_{\text {chain }} \varphi_{K S}$

Skyrme crystals at pion mass $t=1$

Energy ordering: sheet $<$ chain $<\alpha<$ KS

$$
\begin{aligned}
& g_{\text {sheet }}=\left(\begin{array}{ccc}
L_{1} & 0 & 0 \\
0 & L_{1} & 0 \\
0 & 0 & L_{3}
\end{array}\right) \\
& L_{3}>L_{1}
\end{aligned}
$$

$$
g_{\text {chain }}=\left(\begin{array}{ccc}
L_{1} & 0 & 0 \\
0 & L_{2} & 0 \\
0 & 0 & L_{2}
\end{array}\right)
$$

$$
L_{2}>L_{1}
$$

trigonal, but not cubic!

Isospin inertia tensors

$$
\begin{aligned}
& U_{K S}=\left(\begin{array}{ccc}
165.2 & 0 & 0 \\
0 & 165.2 & 0 \\
0 & 0 & 165.2
\end{array}\right), \quad U_{\alpha}=\left(\begin{array}{ccc}
135.5 & 0 & 0 \\
0 & 135.5 & 0 \\
0 & 0 & 167.3
\end{array}\right), \\
& U_{\text {sheet }}=\left(\begin{array}{ccc}
135.8 & 0 & 0 \\
0 & 135.8 & 0 \\
0 & 0 & 166.8
\end{array}\right), \quad U_{\text {chain }}=\left(\begin{array}{ccc}
135.6 & 0 & 0 \\
0 & 135.7 & 0 \\
0 & 0 & 167.2
\end{array}\right) .
\end{aligned}
$$

Optimal crystals at fixed baryon density

- Baryon density $\rho=\frac{B}{\sqrt{\operatorname{det} g}}$

Optimal crystals at fixed baryon density

- Baryon density $\rho=\frac{B}{\sqrt{\operatorname{det} g}}$
- Optimal lattice at fixed ρ ? Minimize

$$
E: C_{B}^{2}\left(T^{3}, S^{3}\right) \times \operatorname{det}^{-1}\left(B^{2} / \rho^{2}\right) \rightarrow \mathbb{R}
$$

I.e. restrict E to level set of det : $S P D_{3} \rightarrow(0, \infty)$.

Optimal crystals at fixed baryon density

- Baryon density $\rho=\frac{B}{\sqrt{\operatorname{det} g}}$
- Optimal lattice at fixed ρ ? Minimize

$$
E: C_{B}^{2}\left(T^{3}, S^{3}\right) \times \operatorname{det}^{-1}\left(B^{2} / \rho^{2}\right) \rightarrow \mathbb{R}
$$

I.e. restrict E to level set of det : $S P D_{3} \rightarrow(0, \infty)$.

- Same argument implies (for fixed φ) existence of global minimizing g

Optimal crystals at fixed baryon density

- Baryon density $\rho=\frac{B}{\sqrt{\operatorname{det} g}}$
- Optimal lattice at fixed ρ ? Minimize

$$
E: C_{B}^{2}\left(T^{3}, S^{3}\right) \times \operatorname{det}^{-1}\left(B^{2} / \rho^{2}\right) \rightarrow \mathbb{R}
$$

I.e. restrict E to level set of det : $S P D_{3} \rightarrow(0, \infty)$.

- Same argument implies (for fixed φ) existence of global minimizing g
- Uniqueness argument does not apply

Optimal crystals at fixed baryon density

- Baryon density $\rho=\frac{B}{\sqrt{\operatorname{det} g}}$
- Optimal lattice at fixed ρ ? Minimize

$$
E: C_{B}^{2}\left(T^{3}, S^{3}\right) \times \operatorname{det}^{-1}\left(B^{2} / \rho^{2}\right) \rightarrow \mathbb{R}
$$

I.e. restrict E to level set of det : $S P D_{3} \rightarrow(0, \infty)$.

- Same argument implies (for fixed φ) existence of global minimizing g
- Uniqueness argument does not apply
- Can again solve numerically by ANF

Optimal crystals at fixed baryon density

Concluding remarks

- Energetically optimal soliton lattices do not necessarily have cubic (or triangular) symmetry!

Concluding remarks

- Energetically optimal soliton lattices do not necessarily have cubic (or triangular) symmetry!
- Many examples in condensed matter. True also for nuclear Skyrme model with massive pions

Concluding remarks

- Energetically optimal soliton lattices do not necessarily have cubic (or triangular) symmetry!
- Many examples in condensed matter. True also for nuclear Skyrme model with massive pions
- Extreme case: baby Skyrme model $\varphi: M^{2} \rightarrow S^{2}$

$$
E(\varphi)=\int_{M}\left(\frac{1}{2}|d \varphi|^{2}+\frac{1}{2}\left|\varphi^{*} \omega\right|^{2}+V(\varphi) .\right.
$$

Given any period lattice $\Lambda \subset \mathbb{R}^{2}$, can cook up a smooth potential $V: S^{2} \rightarrow[0, \infty)$ s.t. $E(\varphi, g)$ has a global min at $\left(\varphi_{*}, g_{\Lambda}\right)$ with φ_{*} degree 2 and holomorphic.

Concluding remarks

- So this crazy lattice is the period lattice of a baby Skyrmion crystal, at least for a (highly contrived) choice of V!

