
Ricci Magnetic Geodesic Motion of Vortices and
Lumps

Martin Speight (University of Leeds)
joint with

Lamia Alqahtani (King Abdulaziz University, Jeddah)

July 11, 2014



Vortices

L =
1

2

(
DµϕDµϕ− 1
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FµνF

µν − 1

4
(|ϕ|2 − 1)2

)

Finite total energy =⇒ |ϕ| → 1, Dϕ→ 0 as r →∞.

At large r , ϕ ∼ e iχ(θ), A ∼ −iϕ−1dϕ ∼ dχ

Flux quantization: B = F12∫
R2

B =

∮
S1
∞

A = χ(2π)− χ(0) = 2πn.

n = number of zeroes of ϕ (with multiplicity). Energy peaks.



Bogomol’nyi argument
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1
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∫
R2

|Diϕ|2 + F 2
12 +

1

4
(1− |ϕ|2)

For a static field (∂0 = 0, A0 = 0) with winding n,

0 ≤ 1

2

∫
R2

|D1ϕ+ iD2ϕ|2 + (B − 1

2
(1− |ϕ|2))2

= E − 1

2

∫
R2

B + i(∂1(ϕD2ϕ)− ∂2(ϕD1ϕ))

= E − πn

So E ≥ πn, with equality iff

(BOG1) D1ϕ+ iD2ϕ = 0

(BOG2) B =
1

2
(1− |ϕ|2)



Taubes’s existence theorem

Given any collection of points Z1, . . . ,Zn in C ≡ R2 there is a
unique (up to gauge) n-vortex solution of the Bogomol’nyi
equations with ϕ = 0 precisely at Z1, . . . ,Zn. Roughly, Zr =
vortex positions.

Moduli space of n-vortices: Mn ≡ Cn

Global coords p1, . . . , pn

Local coords Z1, . . . ,Zn on Mn\∆



Geodesic approximation

Restrict dynamics to Mn

S =

∫
(T − V )dt =

∫
(T − πn)dt

T =
1

2

∫
R2

|∂0ϕ|2 + (∂0A1)
2 + (∂0A2)

2

Geodesic motion w.r.t. metric induced on Mn by T . Denote
this metric γ, the L2 metric



Strachan-Samols formula for the metric

Expand log |ϕ|2 in a neighbourhood of Zr

log |ϕ|2 = 2 log |z−Zr |+ar +
1

2
br (z−Zr )+

1

2
br (z−Z r )+ · · ·

Defines coefficients br (Z1, . . . ,Zn), r = 1, 2, . . . , n

Metric: γ = π

n∑
r ,s=1

(
δrs + 2

∂bs

∂Zr

)
dZrdZ s

Hermitian, since T real:
∂bs

∂Zr
=
∂br

∂Z r

(KC )

Kähler form

ω =
iπ

2

n∑
r ,s=1

(
δrs + 2

∂bs

∂Zr

)
dZr ∧ dZ s

Closed by (KC ). Mn is a Kähler manifold.
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Chern-Simons Vortices

L =
1

2

(
DµϕDµϕ− 1

2
FµνF

µν + κ εµνρAµ∂νAρ + ∂µN∂µN

−1

4
(|ϕ|2 − 1−2κN)2 + |ϕ|2 N2

)

Finite energy: |ϕ| → 1, N → 0, [or ϕ→ 0, N → −(2κ)−1] as
r →∞
Flux quantization unchanged

κ = 0: usual AHM embeds with N = 0



Bogomol’nyi argument (Lee-Lee-Min)

Consider all stationary fields (∂0ϕ = ∂0Aµ = 0) satisfying
Gauss’s law (E-L eqn from varying A0)

∇2A0 − |ϕ|2 A0 − κB = 0

E =
1

2

∫
R2

| − iA0ϕ|2 + DiϕDiϕ+ ∂iA0∂iA0 + B2 + V (ϕ,N)

=
1

2

∫
R2

(
|(D1 + iD2)ϕ|2 +

(
B +

1

2
(|ϕ|2 − 1− 2κN)

)2

+ |ϕ|2 (A0 − N)2 − 2N(∇2A0 − |ϕ|2 A0 − κB)

+(∇A0 −∇N)2 + B

)
d2x

≥ πn with equality iff

(D1 + iD2)ϕ = 0 B +
1

2
(|ϕ|2 − 1− 2κN) = 0 A0 = N

Formal index theorem argument suggests Mn ≡ Cn again
(Lee-Min-Rim)



Kim-Lee approximation (small κ, speed)

Curve α(t) in Mn ≡ Mn|κ=0

L =
1

2
γL2(α̇, α̇) +A1(α̇) +A2(α̇) + O(κ3, κ2v , κv2, v3)

A1 = i
πκ

2

∑
r

(brdzr − brdz r )

A2 = i
πκ

8

∑
r

(Hrdzr − Hrdz r )

Hr = −br +
∑
s 6=r

{
(zr − zs)

∂br

∂zs
+ (z r − zs)

∂br

∂zs

}
.

Magnetic geodesic motion on Mn, B = d(A1 +A2)

Collie and Tong’s (amazing) claim: B = κρ!
(Recall: ρ(X ,Y ) = Ric(JX ,Y ), a closed two-form on any
Kähler mfd)

Argument is extremely indirect.



Kim-Lee flow on M2 is ill-defined!

COM/relative coords

Z =
1

2
(z1 + z2), ζ = σe iθ =

1

2
(z1 − z2)/2

Translation/reflexion symmetry =⇒

b1(ζ) = b(σ)e−iθ = −b2(ζ), b real

B = f (σ)dσ ∧ σdθ where

f (σ) =
πκ

σ

d

dσ

(
−2σb(σ) +

1

2
σ2b′(σ)

)
Defines B on all M2 except coincidence set, σ = 0



Kim-Lee flow on M2 is ill-defined!

Small σ asymptotics:

b(σ) =
1

σ
− 1

2
σ + O(σ2)

=⇒ f (σ) =
3

2
πκ+ O(σ2)

But ζ = σe iθ is not a global coordinate on M2 (since ζ ≡ −ζ).

p(z) = (z − z1)(z − z2) = z2 − 2Zz + (Z 2 − ζ2)z

so good global coords are Z ,w where w = ζ2.

B = 3
2πκ

(
1
|w | + O(1)

)
i
8dw ∧ dw

B blows up on ∆ ⊂ M2.

B 6= κρ



Ricci magnetic geodesic flow

Kim-Lee flow on Mn is not RMG flow

In fact, it’s not a globally well-defined flow at all (undefined
when vortices coincide)

RMG flow certainly is globally defined, so maybe Collie-Tong
are right (despite being “wrong”. . . )?

RMG flow makes sense on any Kähler manifold



Ricci magnetic geodesic flow

∇α
d/dt α̇ = κ ]ια̇ρ

Obvious properties:

reduces to geodesic flow when κ = 0
conserves speed ‖α̇(t)‖2 = γ(α̇, α̇)
α(t) is RMGκ iff α(ct) is RMGcκ

can assume κ = 1, or ‖α̇‖ = 1

On a surface, ρ = Kω

so α is RMGκ iff it has constant speed and

signed curvature = 〈
∇d/dt α̇

‖α̇‖2
, J

α̇

‖α̇‖
〉 =

κ

‖α̇‖
K



Ricci magnetic geodesic flow

∇α
d/dt α̇ = κ ]ια̇ρ

RMG curves are not preserved by time reversal, or by general
isometries

RMG curves are preserved by holomorphic local isometries

Corollary: Let G be a group of holomorphic isometries of M
and MG be its fixed point set. General nonsense implies MG is
a complex submanifold of M. Then any RMG curve in M with
initial data tangent to MG remains on MG for all time.

Warning! MG is itself a Kähler mfd (w.r.t ι∗γ) so has its own
RMG flow. These two RMG flows (extrinsic and intrinsic) do
not coincide in general!



Hyperbolic vortices

Metric on Mn not known for vortices on R2

Nice fact: Bogomol’nyi eqns are integrable if we put the
model on H2

H2 = {x + iy ∈ C : y > 0}, g =
8

y2
(dx2 + dy2)

H2 = {x + iy ∈ C : |x + iy | < 1}, g =
8(dx2 + dy2)

(1− x2 − y2)2

Allows one (in principle) to compute metric on Mn exactly



Hyperbolic vortices

In practice, only metric on certain 2-dim submanifolds of Mn

known exactly

γco
n =

πn(n + 2)

2
gH2

γpoly
n,n−1 =

3

2
πngH2



Metric on M2 = (H2 ×H2)/S2

G = PL(2,R) acts isometrically on H2, hence on M2(
a b
c d

)
: z 7→ az + b

cz + d

Every G orbit contains a unique point ws = [(ies/2, ie−s/2)],
s ≥ 0

Generic isotropy group K = {I2,Q}, Q =

(
0 1
−1 0

)



Metric on M2 = (H2 ×H2)/S2



Metric on M2 = (H2 ×H2)/S2

γ determined by it values on Vs = Tws M2 = 〈∂/∂s〉 ⊕ g

g = traceless real 2× 2 matrices, basis

e1 =

(
0 1
1 0

)
, e2 =

(
0 1
−1 0

)
, e3 =

(
1 0
0 −1

)
.

Most general Ad(K ) invariant inner product on Vs

γs = A1(s)ds2+A2(s)σ
2
1+A3(s)σ

2
2+A4(s)σ

2
3+A5(s)dsσ2+A6(s)σ1σ3

where σi = left-invariant one forms dual to ei

Almost complex structure

Je1 = cosh(s/2)e3, Je2 = −4 sinh(s/2)
∂

∂s

γ(JX , JY ) = γ(X ,Y ) =⇒

A3 ≡ 16 sinh2(s/2)A1, A4 ≡
A2

cosh2(s/2)
, A5 ≡ A6 ≡ 0



Metric on M2 = (H2 ×H2)/S2

Kähler form ω(X ,Y ) = γ(JX ,Y )

ω = 4 sinh(s/2)A1 ds ∧ σ2 +
A2

cosh(s/2)
σ1 ∧ σ3

dω = 0 =⇒ d
ds

(
A2

cosh(s/2)

)
− 8 sinh(s/2)A1 = 0

Proposition: let γ be a G -invariant Kähler metric on M2.
Then, for some function A2(s) > 0,

γ = A1ds2 + A2σ
2
1 + A3σ

2
2 + A4σ

2
3

where

A1 =
1

8 sinh(s/2)

d

ds

(
A2(s)

cosh(s/2)

)
A3 = 2 sinh(s/2)

d

ds

(
A2(s)

cosh(s/2)

)
A4 =

A(s)

cosh2(s/2)



Metric on M2 = (H2 ×H2)/S2

Strachan’s formula for γ on M0
2 determines A0, hence A2 up

to an integration constant

Regularity at s = 0 determines the constant

A2(s)

8π
= cosh2(s/2) + 1 + 2 sinh2(s/2)

√
cosh2(s/2)

sinh4(s/2)
+ 1



RMG flow on M0
2

Ricci form easy to compute (obeys same structure lemma as
Kähler form)

Consider the holomorphic isometry
Q : [(z1, z2)] 7→ [(−1/z2,−1/z1)]

Fixed point set: M0
2 = {[(ξ,−1/ξ)] : ξ ∈ H2}

RMG curves initially tangent to M0
2 stay on M0

2 for all time.
Two RMG flows

Extrinsic: B = κρ| ∼ − κes/2ds ∧ σ2

Intrinsic: B = κK (s)ω| ∼ − κ

2
es/2ds ∧ σ2

Compare flows with κintrinsic = 2κextrinsic



Extrinsic vs intrinsic RMG flow on M0
2

extrinsic, intrinsic



Extrinsic vs intrinsic RMG flow on M0
2

extrinsic, intrinsic



Extrinsic vs intrinsic RMG flow on M0
2

extrinsic, intrinsic



Completeness of RMG flow

RMG flow constant speed: M geodesically complete implies M
RMG complete

Converse?

α(t) is RMGκ/c iff α(ct) is RMGκ

Speed →∞ limit equivalent to κ→ 0 (geodesic) limit

Naively suggests converse true

Actually, it’s FALSE!



Moduli space of charge 1 O(3) sigma model lumps on S2

M1 = Rat1 = { az+b
cz+d ad − bc 6= 0} ≡ SO(3)× R3

Kähler, invariant under G = SO(3)× SO(3)

Geodesically incomplete.



Moduli space of charge 1 O(3) sigma model lumps on S2

G -invariance =⇒ RMG flow conserves 6 angular momenta,
Ki , Ii

Also conserves energy ‖α̇‖2

Define q : TRat1 → R7, q(α̇) = (‖α̇‖2,K, I)

Every RMG curve confined to a level set of q

Theorem: every level set of q is compact!

Corollary: RMG flow on Rat1 is complete



Summary

RMG flow on Mn(R2) proposed by Collie-Tong as low energy
model of CS-Maxwell vortex dynamics

Claimed it coincides with Kim-Lee flow

FALSE! In fact Kim-Lee flow ill-defined on ∆ ⊂ Mn

Intrinsic RMG flow on surfaces of revolution in Mn(H2)
studied by Krusch-JMS

Claimed it coincides with extrinsic RMG flow

FALSE! In fact they’re qualitatively different

Krusch-JMS conjectured that geodesic incompleteness implies
RMG incompleteness

FALSE! E.g. (Rat1, γL2) is incomplete but RMG complete



Summary: open questions

Does RMG flow really model CSM vortex dynamics?

numerics?
point vortex model (large separation)?

When does RMG completeness imply geodesic (equiv. metric)
completeness?

Uniformly bounded ρ?
Surfaces of bounded Gauss curvature?

Quantization?

ρ = curvature of canonical bundle. Suggests ψ a section
thereof, and H = 1

2∆∇

What about κ? Quantized on compact M?


