Ricci Magnetic Geodesic Motion of Vortices and Lumps

Martin Speight (University of Leeds) joint with Lamia Alqahtani (King Abdulaziz University, Jeddah)

July 11, 2014

<ロト <四ト <注入 <注下 <注下 <

Vortices

$$\mathcal{L} = rac{1}{2} igg(D_\mu arphi \overline{D^\mu arphi} - rac{1}{2} F_{\mu
u} F^{\mu
u} - rac{1}{4} (|arphi|^2 - 1)^2 igg)$$

- Finite total energy $\Longrightarrow |\varphi| \to 1$, $D\varphi \to 0$ as $r \to \infty$.
- At large r, $arphi \sim e^{i\chi(heta)}$, $A \sim -i arphi^{-1} d arphi \sim d \chi$
- Flux quantization: $B = F_{12}$

$$\int_{\mathbb{R}^2} B = \oint_{S^1_{\infty}} A = \chi(2\pi) - \chi(0) = 2\pi n.$$

• n = number of zeroes of φ (with multiplicity). Energy peaks.

Bogomol'nyi argument

$$E = \frac{1}{2} \int_{\mathbb{R}^2} |D_i \varphi|^2 + F_{12}^2 + \frac{1}{4} (1 - |\varphi|^2)$$

• For a static field $(\partial_0 = 0, A_0 = 0)$ with winding n,

$$0 \leq \frac{1}{2} \int_{\mathbb{R}^2} |D_1 \varphi + i D_2 \varphi|^2 + (B - \frac{1}{2} (1 - |\varphi|^2))^2$$

= $E - \frac{1}{2} \int_{\mathbb{R}^2} B + i (\partial_1 (\overline{\varphi} D_2 \varphi) - \partial_2 (\overline{\varphi} D_1 \varphi))$
= $E - \pi n$

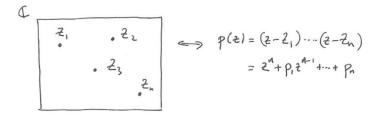
• So $E \ge \pi n$, with equality iff

$$(BOG1) \qquad D_1\varphi + iD_2\varphi = 0$$
$$(BOG2) \qquad B = \frac{1}{2}(1 - |\varphi|^2)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Taubes's existence theorem

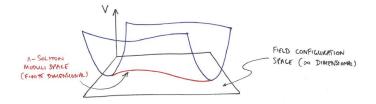
Given any collection of points Z₁,..., Z_n in C ≡ R² there is a unique (up to gauge) *n*-vortex solution of the Bogomol'nyi equations with φ = 0 precisely at Z₁,..., Z_n. Roughly, Z_r = vortex positions.



・ロット (日) (日) (日) (日) (日)

- Moduli space of *n*-vortices: $M_n \equiv \mathbb{C}^n$
- Global coords p₁,..., p_n
- Local coords Z_1, \ldots, Z_n on $M_n \setminus \Delta$

Geodesic approximation



• **Restrict** dynamics to M_n

$$S = \int (T - V)dt = \int (T - \pi n)dt$$

$$T = \frac{1}{2} \int_{\mathbb{R}^2} |\partial_0 \varphi|^2 + (\partial_0 A_1)^2 + (\partial_0 A_2)^2$$

• Geodesic motion w.r.t. metric induced on M_n by T. Denote this metric γ , the L^2 metric

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Strachan-Samols formula for the metric

• Expand $\log |\varphi|^2$ in a neighbourhood of Z_r

$$\log |\varphi|^2 = 2\log |z-Z_r| + a_r + \frac{1}{2}b_r(z-Z_r) + \frac{1}{2}\overline{b}_r(\overline{z}-\overline{Z}_r) + \cdots$$

Defines coefficients $b_r(Z_1, \ldots, Z_n)$, $r = 1, 2, \ldots, n$

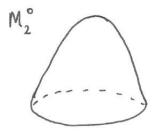
- Metric: $\gamma = \pi \sum_{r,s=1}^{n} \left(\delta_{rs} + 2 \frac{\partial \overline{b}_s}{\partial Z_r} \right) dZ_r d\overline{Z}_s$
- Hermitian, since *T* real:

$$\frac{\partial \overline{b}_s}{\partial Z_r} = \frac{\partial b_r}{\partial \overline{Z}_r} \qquad (KC)$$

Kähler form

$$\omega = \frac{i\pi}{2} \sum_{r,s=1}^{n} \left(\delta_{rs} + 2 \frac{\partial \overline{b}_s}{\partial Z_r} \right) \mathrm{d}Z_r \wedge \mathrm{d}\overline{Z}_s$$

Closed by (KC). M_n is a Kähler manifold.



 $\mathbb{M}_{2} \cong \mathbb{C}_{\mathrm{com}} \times \mathbb{M}_{2}^{\circ}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Chern-Simons Vortices

$$\mathcal{L} = \frac{1}{2} \left(D_{\mu} \varphi \overline{D^{\mu} \varphi} - \frac{1}{2} F_{\mu\nu} F^{\mu\nu} + \kappa \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho} + \partial_{\mu} N \partial^{\mu} N - \frac{1}{4} (|\varphi|^{2} - 1 - 2\kappa N)^{2} + |\varphi|^{2} N^{2} \right)$$

• Finite energy: $|\varphi| \to 1$, $N \to 0$, [or $\varphi \to 0$, $N \to -(2\kappa)^{-1}$] as $r \to \infty$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Flux quantization unchanged
- $\kappa = 0$: usual AHM embeds with N = 0

Bogomol'nyi argument (Lee-Lee-Min)

Consider all stationary fields (∂₀φ = ∂₀A_μ = 0) satisfying Gauss's law (E-L eqn from varying A₀)

$$\nabla^2 A_0 - |\varphi|^2 A_0 - \kappa B = 0$$

$$E = \frac{1}{2} \int_{\mathbb{R}^2} |-iA_0\varphi|^2 + \overline{D_i\varphi} D_i\varphi + \partial_i A_0 \partial_i A_0 + B^2 + V(\varphi, N)$$

$$= \frac{1}{2} \int_{\mathbb{R}^2} \left(|(D_1 + iD_2)\varphi|^2 + (B + \frac{1}{2}(|\varphi|^2 - 1 - 2\kappa N))^2 + |\varphi|^2 (A_0 - N)^2 - 2N(\nabla^2 A_0 - |\varphi|^2 A_0 - \kappa B) + (\nabla A_0 - \nabla N)^2 + B \right) d^2 \mathbf{x}$$

$$\geq \pi n \quad \text{with equality iff}$$

$$(D_1 + iD_2)\varphi = 0 \qquad B + \frac{1}{2}(|\varphi|^2 - 1 - 2\kappa N) = 0 \qquad A_0 = N$$

• Formal index theorem argument suggests $M_n \equiv \mathbb{C}^n$ again (Lee-Min-Rim)

Kim-Lee approximation (small κ , speed)

• Curve
$$\alpha(t)$$
 in $M_n \equiv M_n|_{\kappa=0}$

$$L = \frac{1}{2} \gamma_{L^{2}}(\dot{\alpha}, \dot{\alpha}) + \mathcal{A}_{1}(\dot{\alpha}) + \mathcal{A}_{2}(\dot{\alpha}) + O(\kappa^{3}, \kappa^{2}v, \kappa v^{2}, v^{3})$$

$$\mathcal{A}_{1} = i \frac{\pi \kappa}{2} \sum_{r} (b_{r} dz_{r} - \overline{b_{r}} d\overline{z}_{r})$$

$$\mathcal{A}_{2} = i \frac{\pi \kappa}{8} \sum_{r} (H_{r} dz_{r} - \overline{H_{r}} d\overline{z}_{r})$$

$$H_{r} = -b_{r} + \sum_{s \neq r} \left\{ (z_{r} - z_{s}) \frac{\partial b_{r}}{\partial z_{s}} + (\overline{z}_{r} - \overline{z}_{s}) \frac{\partial b_{r}}{\partial \overline{z}_{s}} \right\}.$$

- Magnetic geodesic motion on M_n , $\mathcal{B} = d(\mathcal{A}_1 + \mathcal{A}_2)$
- Collie and Tong's (amazing) claim: $\mathcal{B} = \kappa \rho!$ (Recall: $\rho(X, Y) = Ric(JX, Y)$, a closed two-form on any Kähler mfd)
- Argument is extremely indirect.

Kim-Lee flow on M_2 is ill-defined!

• COM/relative coords

$$Z = \frac{1}{2}(z_1 + z_2),$$
 $\zeta = \sigma e^{i\theta} = \frac{1}{2}(z_1 - z_2)/2$

• Translation/reflexion symmetry \Longrightarrow

$$b_1(\zeta) = b(\sigma)e^{-i\theta} = -b_2(\zeta),$$
 b real

• $\mathcal{B} = f(\sigma) d\sigma \wedge \sigma d\theta$ where

$$f(\sigma) = rac{\pi\kappa}{\sigma} rac{d}{d\sigma} \left(-2\sigma b(\sigma) + rac{1}{2}\sigma^2 b'(\sigma)
ight)$$

Defines \mathcal{B} on all M_2 except coincidence set, $\sigma = 0$

Kim-Lee flow on M_2 is ill-defined!

• Small σ asymptotics:

$$b(\sigma) = \frac{1}{\sigma} - \frac{1}{2}\sigma + O(\sigma^2)$$
$$\implies f(\sigma) = \frac{3}{2}\pi\kappa + O(\sigma^2)$$

• But $\zeta = \sigma e^{i\theta}$ is not a global coordinate on M_2 (since $\zeta \equiv -\zeta$).

 $p(z) = (z - z_1)(z - z_2) = z^2 - 2Zz + (Z^2 - \zeta^2)z$

so good global coords are Z, w where $w = \zeta^2$.

- $\mathcal{B} = rac{3}{2}\pi\kappa\left(rac{1}{|w|} + O(1)
 ight)rac{i}{8}dw\wedge d\overline{w}$
- \mathcal{B} blows up on $\Delta \subset M_2$.
- $\mathcal{B} \neq \kappa \rho$

- Kim-Lee flow on M_n is **not** RMG flow
- In fact, it's not a globally well-defined flow at all (undefined when vortices coincide)
- RMG flow certainly is globally defined, so maybe Collie-Tong are right (despite being "wrong"...)?

• RMG flow makes sense on any Kähler manifold

Ricci magnetic geodesic flow

$$\nabla^{\alpha}_{d/dt}\dot{\alpha} = \kappa \, \sharp \iota_{\dot{\alpha}}\rho$$

- Obvious properties:
 - reduces to geodesic flow when $\kappa = 0$
 - conserves speed $\|\dot{\alpha}(t)\|^2 = \gamma(\dot{\alpha}, \dot{\alpha})$
 - $\alpha(t)$ is RMG_{κ} iff $\alpha(ct)$ is RMG_{$c\kappa$}
 - can assume $\kappa = 1$, or $\|\dot{\alpha}\| = 1$
- On a surface, $\rho = K\omega$
 - so α is RMG_κ iff it has constant speed and

signed curvature =
$$\langle \frac{\nabla_{d/dt}\dot{lpha}}{\|\dot{lpha}\|^2}, J \frac{\dot{lpha}}{\|\dot{lpha}\|}
angle = \frac{\kappa}{\|\dot{lpha}\|} \kappa$$

Ricci magnetic geodesic flow

$\nabla^{\alpha}_{d/dt}\dot{\alpha} = \kappa \, \sharp\iota_{\dot{\alpha}}\rho$

- RMG curves are **not** preserved by time reversal, or by general isometries
- RMG curves are preserved by holomorphic local isometries
- **Corollary:** Let *G* be a group of holomorphic isometries of *M* and *M^G* be its fixed point set. General nonsense implies *M^G* is a complex submanifold of *M*. Then any RMG curve in *M* with initial data tangent to *M^G* remains on *M^G* for all time.
- Warning! M^G is itself a Kähler mfd (w.r.t ι*γ) so has its own RMG flow. These two RMG flows (extrinsic and intrinsic) do not coincide in general!

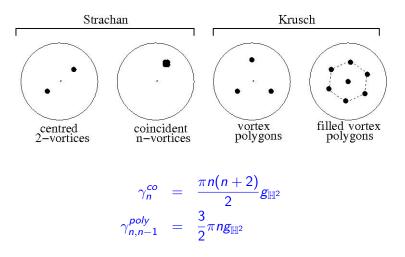
- Metric on M_n not known for vortices on \mathbb{R}^2
- Nice fact: Bogomol'nyi eqns are integrable if we put the model on \mathbb{H}^2

$$\mathbb{H}^{2} = \{x + iy \in \mathbb{C} : y > 0\}, \qquad g = \frac{8}{y^{2}} (dx^{2} + dy^{2})$$
$$\mathbb{H}^{2} = \{x + iy \in \mathbb{C} : |x + iy| < 1\}, \qquad g = \frac{8(dx^{2} + dy^{2})}{(1 - x^{2} - y^{2})^{2}}$$

• Allows one (in principle) to compute metric on M_n exactly

Hyperbolic vortices

 In practice, only metric on certain 2-dim submanifolds of M_n known exactly



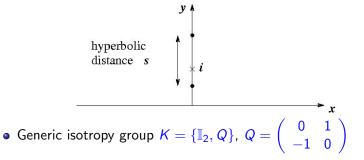
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Metric on $M_2 = (\mathbb{H}^2 imes \overline{\mathbb{H}^2})/S_2$

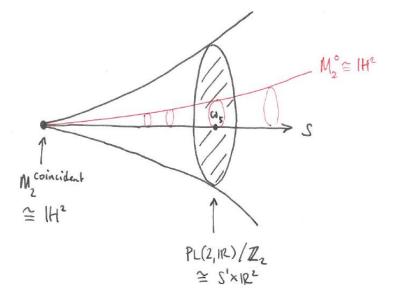
• $G = PL(2, \mathbb{R})$ acts isometrically on \mathbb{H}^2 , hence on M_2

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) : z \mapsto \frac{az+b}{cz+d}$$

• Every G orbit contains a unique point $w_s = [(ie^{s/2}, ie^{-s/2})], s \ge 0$



Metric on $M_2 = (\mathbb{H}^2 \times \mathbb{H}^2)/S_2$



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Metric on $M_2 = (\mathbb{H}^2 \times \mathbb{H}^2)/S_2$

• γ determined by it values on $V_s = T_{w_s} M_2 = \langle \partial / \partial s \rangle \oplus \mathfrak{g}$ • $\mathfrak{g} = \text{traceless real } 2 \times 2 \text{ matrices, basis}$

$$e_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad e_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

• Most general Ad(K) invariant inner product on V_s

 $\gamma_{s} = A_{1}(s)ds^{2} + A_{2}(s)\sigma_{1}^{2} + A_{3}(s)\sigma_{2}^{2} + A_{4}(s)\sigma_{3}^{2} + A_{5}(s)ds\sigma_{2} + A_{6}(s)\sigma_{1}\sigma_{3}$

where σ_i = left-invariant one forms dual to e_i

Almost complex structure

$$Je_1 = \cosh(s/2)e_3, \qquad Je_2 = -4\sinh(s/2)\frac{\partial}{\partial s}$$

•
$$\gamma(JX, JY) = \gamma(X, Y) \Longrightarrow$$

 $A_3 \equiv 16 \sinh^2(s/2)A_1, \quad A_4 \equiv \frac{A_2}{\cosh^2(s/2)}, \quad A_5 \equiv A_6 \equiv 0$

Metric on $M_2 = (\mathbb{H}^2 \times \mathbb{H}^2)/S_2$

• Kähler form $\omega(X, Y) = \gamma(JX, Y)$

$$\omega = 4\sinh(s/2)A_1 \ ds \wedge \sigma_2 + \frac{A_2}{\cosh(s/2)} \ \sigma_1 \wedge \sigma_3$$

•
$$d\omega = 0 \Longrightarrow \frac{d}{ds} \left(\frac{A_2}{\cosh(s/2)} \right) - 8\sinh(s/2)A_1 = 0$$

 Proposition: let γ be a G-invariant Kähler metric on M₂. Then, for some function A₂(s) > 0,

$$\gamma = A_1 ds^2 + A_2 \sigma_1^2 + A_3 \sigma_2^2 + A_4 \sigma_3^2$$

where

$$A_{1} = \frac{1}{8 \sinh(s/2)} \frac{d}{ds} \left(\frac{A_{2}(s)}{\cosh(s/2)} \right)$$

$$A_{3} = 2 \sinh(s/2) \frac{d}{ds} \left(\frac{A_{2}(s)}{\cosh(s/2)} \right)$$

$$A_{4} = \frac{A(s)}{\cosh^{2}(s/2)}$$

- Strachan's formula for γ on M_2^0 determines A_0 , hence A_2 up to an integration constant
- Regularity at s = 0 determines the constant

$$\frac{A_2(s)}{8\pi} = \cosh^2(s/2) + 1 + 2\sinh^2(s/2)\sqrt{\frac{\cosh^2(s/2)}{\sinh^4(s/2)}} + 1$$

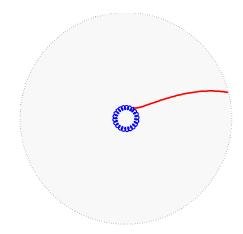
RMG flow on M_2^0

- Ricci form easy to compute (obeys same structure lemma as Kähler form)
- Consider the holomorphic isometry $Q: [(z_1, z_2)] \mapsto [(-1/z_2, -1/z_1)]$
- Fixed point set: $M_2^0 = \{ [(\xi, -1/\xi)] : \xi \in \mathbb{H}^2 \}$
- RMG curves initially tangent to M_2^0 stay on M_2^0 for all time. Two RMG flows

Extrinsic: $\mathcal{B} = \kappa \rho | \sim -\kappa e^{s/2} ds \wedge \sigma_2$ Intrinsic: $\mathcal{B} = \kappa \mathcal{K}(s) \omega | \sim -\frac{\kappa}{2} e^{s/2} ds \wedge \sigma_2$

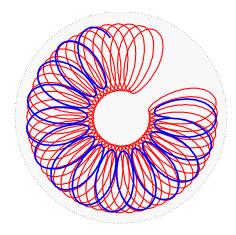
Compare flows with $\kappa_{intrinsic} = 2\kappa_{extrinsic}$

Extrinsic vs intrinsic RMG flow on M_2^0



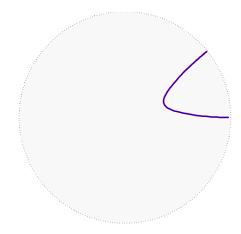
extrinsic, intrinsic

Extrinsic vs intrinsic RMG flow on M_2^0



extrinsic, intrinsic

Extrinsic vs intrinsic RMG flow on M_2^0



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

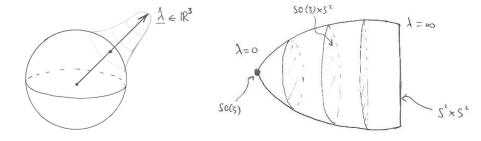
extrinsic, intrinsic

 RMG flow constant speed: M geodesically complete implies M RMG complete

- Converse?
- $\alpha(t)$ is $\text{RMG}_{\kappa/c}$ iff $\alpha(ct)$ is RMG_{κ}
- Speed $\rightarrow \infty$ limit equivalent to $\kappa \rightarrow 0$ (geodesic) limit
- Naively suggests converse true
- Actually, it's FALSE!

Moduli space of charge 1 O(3) sigma model lumps on S^2

•
$$M_1 = \operatorname{Rat}_1 = \{ \frac{az+b}{cz+d} ad - bc \neq 0 \} \equiv SO(3) \times \mathbb{R}^3$$



- Kähler, invariant under $G = SO(3) \times SO(3)$
- Geodesically incomplete.

• *G*-invariance \implies RMG flow conserves 6 angular momenta, K_i, I_i

- Also conserves energy $\|\dot{\alpha}\|^2$
- Define $q: T \operatorname{Rat}_1 \to \mathbb{R}^7$, $q(\dot{\alpha}) = (\|\dot{\alpha}\|^2, \mathbf{K}, \mathbf{I})$
- Every RMG curve confined to a level set of q
- Theorem: every level set of q is compact!
- Corollary: RMG flow on Rat₁ is complete

- RMG flow on M_n(R²) proposed by Collie-Tong as low energy model of CS-Maxwell vortex dynamics
- Claimed it coincides with Kim-Lee flow
- **FALSE!** In fact Kim-Lee flow ill-defined on $\Delta \subset M_n$
- Intrinsic RMG flow on surfaces of revolution in M_n(H²) studied by Krusch-JMS
- Claimed it coincides with extrinsic RMG flow
- FALSE! In fact they're qualitatively different
- Krusch-JMS conjectured that geodesic incompleteness implies RMG incompleteness
- FALSE! E.g. (Rat_1, γ_{L^2}) is incomplete but RMG complete

Summary: open questions

- Does RMG flow really model CSM vortex dynamics?
 - numerics?
 - point vortex model (large separation)?
- When does RMG completeness imply geodesic (equiv. metric) completeness?
 - Uniformly bounded ρ ?
 - Surfaces of bounded Gauss curvature?
- Quantization?
 - $\rho =$ curvature of canonical bundle. Suggests ψ a section thereof, and $H = \frac{1}{2}\Delta^{\nabla}$

• What about κ ? Quantized on compact *M*?