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@ Usual model: classical binding energies much too large
@ Can include potential, sextic (and higher) terms
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@ Can include potential, sextic (and higher) terms
@ Adam, Sanchez-Guillen, Wereszczynski: BPS model
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@ Equality iff
¢*voly = (Uo@)voly  (BOG)

@ Solutions are volume-preserving maps M — N' = N\U~'(0)
where voly = voly /U,

@ voly = voly



Near BPS Skyrme models

(p* VOlN/ = VOlM

@ Given solution @ and volume-preserving map y: M — M
(meaning y*voly = voly), @ oy also solves (BOG)

@ ASW use this: given charge 1 BPS solution (hedgehog), obtain
charge B solutions Qneqgenog © Y Where

ye RAR, = RA\R,,  yp(r,0,0) = (B"/°r,0,B0)

@ BPS Skyrmions come in infinite dimensional families: orbits of @
under SDiff(M, g).



Near-BPS Skyrme models

E=E+Es

BPS model is sick: field equation doesn’t uniquely determine time
evolution even locally

Need to include E,. Take € > 0 small. Near BPS Skyrme model

Use BPS Skyrmions as starting approx in near BPS theory. But
which ones? They come in infinite dimensional families!

®pps should minimize E, among all maps in its SDiff orbit

Suggests natural variant of harmonic map problem



Near-BPS Skyrme models

E=Ey+Es+¢€E

BPS model is sick: field equation doesn’t uniquely determine time
evolution even locally

Need to include E,. Take € > 0 small. Near BPS Skyrme model

Use BPS Skyrmions as starting approx in near BPS theory. But
which ones? They come in infinite dimensional families!

®pps should minimize E, among all maps in its SDiff orbit

Suggests natural variant of harmonic map problem



Restricted harmonic maps

e SDiff(M, g) = volume preserving diffeos of M of compact
support

o supp(y) ={x € M : y(x) # x}

@ Definition: ¢ : (M, g) — (N, h) is restricted harmonic if Ex(¢) is
finite and @ locally extremizes the restriction of E; to its
SDiff(M, g) orbit
i.e. for all smooth curves y; in SDiff(M, g) through yo = Idyy,

d
EEZ((PO‘IH) =0

t=0

@ Clearly harmonic = restricted harmonic, but converse is false
(e.g. all closed curves S' — (N, h) are restricted harmonic!)

@ Will also want local stability criterion (need ¢ to minimize E; not
just extremize)



A smooth map ¢ : (M, g) — (N, h) of finite E; is restricted harmonic iff
dive*h is exact (= df forsomef: M — R)

o (divT)(X) =Ei(Ve T)(&i X).
e OnR™, (diV T)k =Y,0;Ti
e Useful fact: div (fT) = 1y T + fdiv T (so div (fg) = df)
@ d(dive*h) = 0 third order nonlinear PDE for ¢, plus finite
collection of integral constraints (parametrized by Hg]);l,aC,(M))

@ Proof uses a nice trick



Geometric naturalness (naturality?)

@ Fact: Ex(¢, g) is geometrically natural:
For all maps ¢ : M — N, diffeos y : M — M and Riemannian
metrics g on M,

Ex(9ow,g) = Ex(¢, (v ')*g)

3 ¢ W P

= Variations of ¢ through diffeos of M (with g fixed) are
equivalent to variations of g via pullback (with ¢ fixed)!

@ Leads us to consider variations of g



The stress tensor

@ Given any curve of metrics g; through go = g tangent to
€ = 97t/ =0,

—E

t=0

@ Uniquely determines a symmetric (0,2) tensor S(@), the stress
tensor

@ For E,,

1 «
S(9) = E\dw\zg—tp h



(Partial) proof of first variation theorem

@ M compact, ¢ restricted harmonic =  d(dive*h) =0

@ Choose any 2-form v on M. Then X = £dv is a divergenceless
vector field on M. Hence its flow y; is a curve in SDiff(M, g)
through Idy

= L(s(¢),~Zxa):

d «
= &Ez(cp,wftg) 5

d
0= EEz((PO\th)

t=0 t=0

- /M (div 8)(X) = (div 8,0 X) 2 = (div S, V)2 = (d(div S),V)z

@ But S=fg—@*hsodivS=df—div(¢*h) O



Weakly conformal maps are restricted harmonic

@ Amap ¢: (M,g) — (N, h) is weakly conformal if ¢*h = fg for
some smooth function f : M — R

@ Corollary: Let ¢ have finite E, and be weakly conformal. Then ¢
is restricted harmonic
Proof: dive*h =div(fg) = df O

@ E.g. inverse stereographic projection R® — S is conformal,
hence restricted harmonic. Also a charge 1 BPS Skyrmion, for

U(9) = (1-o)°



Suspension maps R® — S°

@ Fix maps % : S — S? of degree Band f : [0,) — (0, 7]
The suspension of Z by f is

¢:R3— S CRY, ¢@(rn) = (cosf(r),sinf(r)Z(n))

where r >0 and n € S? C R3. Degree B Skyrme field
@ Such a map has ¢*h = f'(r)?dr? +sin? f(r)%* gs
@ Hedgehog ansatz: #Z = Ids

o*h = a(r)g+b(r)dr®  since g = dr’ 4 r’ge
= div(e*h) = da+c(r)dr

always exact.

@ All fields in hedgehog ansatz are restricted harmonic



Suspension maps R® — S°

o(rn) = (cosf(r),sinf(r)%Z(n)), @ h=f(r)?dr* +sin®f(r)Z*gs

@ Rational map ansatz: %2 =holomorphic, hence weakly
conformal, %" gse = M(n)gse

o*h = a(r,n)g+b(r)A(n)dr?
= div(e*h) = da+A(n)c(r)ar

Never closed unless A =constant, i.e., % an isometry (hedgehog
ansatz).

@ Rational map ansatz gives no new restricted harmonic maps



Suspension maps R® — S°

o(rn) = (cosf(r),sinf(r)%(n)), @ h=f(r)?dr* +sin®f(r)%*gs

@ ASW ansatz: Z(0,0) = (0, B0)

o*h = f(r)?dr® +sin®f(r)(d6® + B*sin®8d¢?)
= ddiv(¢*h) = (B*—1)(---)#0 if B# +1

@ Again, no restricted harmonic maps except hedgehogs (B = 1)

@ Can construct RH maps R® — S2 in each htpy class by taking
Z# =1dg and f(0) = B, f(e) = 0, but these are rather fake



Lower dimensions

@ M = R: trivial as SDiff(R, dx?) = {Idy}
@ M= S': also trivial as SDiff(S', dx?) = {translations }

@ Baby skyrme fields: M = R?, N = S?
Any rotationally equivariant map ¢(rn) = (cos f(r),sinf(r)n?) is
restricted harmonic



Stability: second variation of E»

@ Hessy : [o(TM) x T'o(TM) — R is the symmetric bilinear form

0®Ex(o Vs t)

Hessy(X,Y) = 3ot

s=t=0
where s ; is an arbitrary two-param variation of yg g = Idy in
SDiff(M, g), with

X = 0sWs,0|s=0, Y = 0:Wot|i=o

@ ¢ is stable if Hessy(X,X) > 0 for all X, unstable otherwise

Hesse(X,Y) = 3(ZLx0*h, Zyg) 2

@ Doesn’t look symmetric, but it is



Stability

@ Corollary: Let ¢ have finite E, and be weakly conformal. Then ¢
is stable restricted harmonic

@ Proof: Zx(9*h) = Zx(f?g) = 2.%xg + X[f?]g,s0

1 1 1
Hessy(X, X) = EHffXQHfz + §<X[f2]Q,$XQ>L2 = §||f$XQ||i2

since %xg is pointwise orthogonal to g. []



Concluding remarks

@ In order to be a sensible approximant of a near-BPS Skyrmion in
the model Ey + Es 4 €E», @gps should be restricted harmonic
(and have Hess > 0)

@ (s restricted harmonic iff div (¢*h) is an exact one-form on M

@ Whole analysis easily generalizes to Eq + Eg + €F, where F(,9)
is any geometrically natural functional, e.g. Eo + Ej4.

@ is restricted F-critical iff div (¢*Sr) is exact

@ Constructing restricted harmonic maps R® — S3 is hard. The

fields used by ASW, Marleau et al are not restricted harmonic



Concluding remarks

e Finite dimensional analogue: given ¢ : RX — N, minimize
1
Ey:SL(k,R) =R,  E¢(A)=Ex(@oA)= étr(ATMA)

where Mj = [p« Z;;dx = “average strain matrix”
o Fact: £,(A) > X(detM)'/k, with equality if and only if
AT MA = ull, and equality is always attained
o E.g.for (PéSW = Qhedgehog © VB,

;]
Ag = AB
Ag2

where Ag — 0 monotonically as B — . Squashed BPS
Skyrmions
o Ex(¢pS") ~ B7/2 whereas E»(9S"W o Ag) ~ B%/°



Concluding remarks

@ As a natural geometric variational problem, restricted harmonic
maps have lots of interesting open questions:
e cohomological (local/global RHMs)
o rigidity theory (dimension of the moduli space of RHMs)
e spectral approach to stability...



