Near-BPS Skyrmions and Restricted Harmonic Maps

Martin Speight University of Leeds, UK

Skymions@Kent, August 2014

・ロト ・御 ト ・ 注 ト ・ 注

$$\phi: \mathbb{R}^3 \to S^3$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$\phi: \textbf{\textit{M}} \rightarrow \textbf{\textit{N}}$

 $\varphi: M \to N$ $E = E_2 + E_4$ $E_2 = \frac{1}{2} \int_M |\mathrm{d}\varphi|^2$ $E_4 = \frac{1}{2} \int_M |\mathrm{d}\varphi \wedge \mathrm{d}\varphi|^2$

Usual model: classical binding energies much too large

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 $\phi: M \to N$

$$E = E_0 + E_2 + E_4$$
$$E_0 = \frac{1}{2} \int_M U(\phi)^2$$
$$E_2 = \frac{1}{2} \int_M |d\phi|^2$$
$$E_4 = \frac{1}{2} \int_M |d\phi \wedge d\phi|^2$$

• Usual model: classical binding energies much too large

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

• Can include potential,

 $\phi: M \to N$

$$E = E_0 + E_2 + E_4 + E_6 + \cdots$$
$$E_0 = \frac{1}{2} \int_M U(\phi)^2$$
$$E_2 = \frac{1}{2} \int_M |\mathrm{d}\phi|^2$$
$$E_4 = \frac{1}{2} \int_M |\mathrm{d}\phi \wedge \mathrm{d}\phi|^2$$
$$E_6 = \frac{1}{2} \int_M |\phi^* \mathrm{vol}_N|^2$$

Usual model: classical binding energies much too large

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Can include potential, sextic (and higher) terms

 $\phi: M \to N$

$$E = E_0 + E_6$$

$$E_0 = \frac{1}{2} \int_M U(\phi)^2$$

$$E_2 = \frac{1}{2} \int_M |d\phi|^2$$

$$E_4 = \frac{1}{2} \int_M |d\phi \wedge d\phi|^2$$

$$E_6 = \frac{1}{2} \int_M |\phi^* \operatorname{vol}_N|^2$$

- Usual model: classical binding energies much too large
- Can include potential, sextic (and higher) terms
- Adam, Sanchez-Guillen, Wereszczynski: BPS model

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

4

$$\varphi: M \to N, \qquad E = E_6 + E_0$$

$$0 \leq \frac{1}{2} \|\phi^* \operatorname{vol}_N - *U \circ \phi\|_{L^2}^2 = E - \langle \phi^* \operatorname{vol}_N, *U \circ \phi \rangle_{L^2}$$
$$E \geq \int_M \phi^* (U \operatorname{vol}_N) = \operatorname{constant} B$$

Equality iff

$$\varphi^* \operatorname{vol}_N = (U \circ \varphi) \operatorname{vol}_M \qquad (BOG)$$

• Solutions are volume-preserving maps $M \rightarrow N' = N \setminus U^{-1}(0)$ where $\operatorname{vol}_{N'} = \operatorname{vol}_N/U$,

$$\varphi^* \mathrm{vol}_{N'} = \mathrm{vol}_M$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

 $\varphi^* \operatorname{vol}_{N'} = \operatorname{vol}_M$

- Given solution φ and volume-preserving map $\psi : M \to M$ (meaning $\psi^* \operatorname{vol}_M = \operatorname{vol}_M$), $\varphi \circ \psi$ also solves (*BOG*)
- ASW use this: given charge 1 BPS solution (hedgehog), obtain charge *B* solutions φ_{hedgehog} ο ψ_B where

$$\psi_{B}: \mathbb{R}^{3} \backslash \mathbb{R}_{z} \to \mathbb{R}^{3} \backslash \mathbb{R}_{z}, \qquad \psi_{B}(r, \theta, \phi) = (B^{-1/3}r, \theta, B\phi)$$

 BPS Skyrmions come in infinite dimensional families: orbits of φ under SDiff(M,g).

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$E = E_0 + E_6$

- BPS model is sick: field equation doesn't uniquely determine time evolution even locally
- Need to include E_2 . Take $\varepsilon > 0$ small. Near BPS Skyrme model
- Use BPS Skyrmions as starting approx in near BPS theory. But which ones? They come in infinite dimensional families!

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- φ_{BPS} should **minimize** E_2 among all maps in its SDiff orbit
- Suggests natural variant of harmonic map problem

$E = E_0 + E_6 + \varepsilon E_2$

- BPS model is sick: field equation doesn't uniquely determine time evolution even locally
- Need to include E_2 . Take $\varepsilon > 0$ small. Near BPS Skyrme model
- Use BPS Skyrmions as starting approx in near BPS theory. But which ones? They come in infinite dimensional families!

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- φ_{BPS} should **minimize** E_2 among all maps in its SDiff orbit
- Suggests natural variant of harmonic map problem

Restricted harmonic maps

- SDiff(*M*, *g*) = volume preserving diffeos of *M* of compact support
 - $supp(\psi) = \overline{\{x \in M : \psi(x) \neq x\}}$
- **Definition:** $\varphi : (M, g) \to (N, h)$ is **restricted** harmonic if $E_2(\varphi)$ is finite and φ locally extremizes the restriction of E_2 to its SDiff(M, g) orbit

i.e. for all smooth curves ψ_t in SDiff(M, g) through $\psi_0 = \text{Id}_M$,

$$\left.\frac{d}{dt}E_2(\phi\circ\psi_t)\right|_{t=0}=0$$

- Clearly harmonic ⇒ restricted harmonic, but converse is false (e.g. all closed curves S¹ → (N, h) are restricted harmonic!)
- Will also want local stability criterion (need φ to minimize E₂ not just extremize)

Theorem

A smooth map $\varphi : (M, g) \to (N, h)$ of finite E_2 is restricted harmonic iff div $\varphi^* h$ is exact (= df for some $f : M \to \mathbb{R}$)

- $(\operatorname{div} T)(X) = \sum_{i} (\nabla_{e_i} T)(e_i, X).$
 - On \mathbb{R}^m , $(\operatorname{div} T)_k = \sum_i \partial_i T_{ik}$
 - Useful fact: $\operatorname{div}(fT) = \iota_{\nabla f}T + f\operatorname{div} T$ (so $\operatorname{div}(fg) = df$)
- d(div φ*h) = 0 third order nonlinear PDE for φ, plus finite collection of integral constraints (parametrized by H^{m-1}_{compact}(M))

Proof uses a nice trick

Geometric naturalness (naturality?)

 Fact: E₂(φ, g) is geometrically natural: For all maps φ : M → N, diffeos ψ : M → M and Riemannian metrics g on M,

 $E_2(\phi \circ \psi, g) = E_2(\phi, (\psi^{-1})^*g)$

▲□▶▲□▶▲□▶▲□▶ □ のQで

 \Rightarrow Variations of ϕ through diffeos of *M* (with *g* fixed) are equivalent to variations of *g* via pullback (with ϕ fixed)!

Leads us to consider variations of g

The stress tensor

• Given any curve of metrics g_t through $g_0 = g$ tangent to $\varepsilon = \partial_t g_t|_{t=0}$,

$$\left.\frac{\partial}{\partial t}E(\varphi,g_t)\right|_{t=0}=\frac{1}{2}\langle S(\varphi),\varepsilon\rangle_{L^2}$$

- Uniquely determines a symmetric (0,2) tensor $\mathcal{S}(\phi),$ the stress tensor
- For <u>E₂</u>,

$$S(\varphi) = \frac{1}{2} |\mathrm{d}\varphi|^2 g - \varphi^* h$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

(Partial) proof of first variation theorem

- *M* compact, φ restricted harmonic \Rightarrow d(div $\varphi^* h$) = 0
- Choose any 2-form ν on *M*. Then X = *μ*δν is a divergenceless vector field on *M*. Hence its flow ψ_t is a curve in SDiff(*M*, *g*) through Id_M

$$0 = \frac{d}{dt} E_2(\varphi \circ \psi_t, g) \bigg|_{t=0} = \frac{d}{dt} E_2(\varphi, \psi_{-t}^* g) \bigg|_{t=0} = \frac{1}{2} \langle S(\varphi), -\mathscr{L}_X g \rangle_{L^2}$$
$$= \int_M (\operatorname{div} S)(X) = \langle \operatorname{div} S, \flat X \rangle_{L^2} = \langle \operatorname{div} S, \delta v \rangle_{L^2} = \langle \operatorname{d}(\operatorname{div} S), v \rangle_{L^2}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• But $S = fg - \varphi^* h$ so div $S = df - div(\varphi^* h) \square$

Weakly conformal maps are restricted harmonic

- A map φ : (M, g) → (N, h) is weakly conformal if φ^{*}h = fg for some smooth function f : M → ℝ
- Corollary: Let φ have finite E₂ and be weakly conformal. Then φ is restricted harmonic
 Proof: div φ*h = div (fg) = df □
- E.g. inverse stereographic projection $\mathbb{R}^3 \to S^3$ is conformal, hence restricted harmonic. Also a charge 1 BPS Skyrmion, for $U(\phi) = (1 - \phi_0)^3$

Suspension maps $\mathbb{R}^3 \to S^3$

 Fix maps 𝔐: S² → S² of degree B and f: [0,∞) → (0,π] The suspension of 𝔐 by f is

 $\varphi: \mathbb{R}^3 \to S^3 \subset \mathbb{R}^4, \qquad \varphi(rn) = (\cos f(r), \sin f(r)\mathscr{R}(n))$

where $r \ge 0$ and $n \in S^2 \subset \mathbb{R}^3$. Degree *B* Skyrme field

- Such a map has $\varphi^* h = f'(r)^2 dr^2 + \sin^2 f(r) \mathscr{R}^* g_{S^2}$
- Hedgehog ansatz: $\mathscr{R} = \mathrm{Id}_{S^2}$

$$\begin{split} \phi^* h &= a(r)g + b(r)dr^2 \quad \text{since } g = dr^2 + r^2 g_{S^2} \\ \Rightarrow \quad \operatorname{div}\left(\phi^* h\right) &= da + c(r)dr \end{split}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

always exact.

All fields in hedgehog ansatz are restricted harmonic

 $\varphi(rn) = (\cos f(r), \sin f(r)\mathscr{R}(n)), \qquad \varphi^* h = f'(r)^2 dr^2 + \sin^2 f(r)\mathscr{R}^* g_{S^2}$

Rational map ansatz: *R* = holomorphic, hence weakly conformal, *R*^{*}g_{S²} = λ(n)g_{S²}

 $\varphi^* h = a(r,n)g + b(r)\lambda(n)dr^2$ $\Rightarrow \operatorname{div}(\varphi^* h) = \operatorname{d} a + \lambda(n)c(r)dr$

Never closed unless $\lambda = \text{constant}$, i.e., \mathscr{R} an isometry (hedgehog ansatz).

Rational map ansatz gives no new restricted harmonic maps

 $\varphi(rn) = (\cos f(r), \sin f(r)\mathscr{R}(n)), \qquad \varphi^* h = f'(r)^2 dr^2 + \sin^2 f(r)\mathscr{R}^* g_{S^2}$

• ASW ansatz: $\mathscr{R}(\theta, \phi) = (\theta, B\phi)$

$$\begin{split} \varphi^* h &= f'(r)^2 dr^2 + \sin^2 f(r) (d\theta^2 + B^2 \sin^2 \theta d\phi^2) \\ \Rightarrow & \operatorname{ddiv}(\varphi^* h) &= (B^2 - 1) (\cdots) \neq 0 \quad \text{if } B \neq \pm 1 \end{split}$$

Again, no restricted harmonic maps except hedgehogs (B = 1)

• Can construct RH maps $\mathbb{R}^3 \to S^3$ in each htpy class by taking $\mathscr{R} = \mathrm{Id}_{S^2}$ and $f(0) = B\pi$, $f(\infty) = 0$, but these are rather fake

- $M = \mathbb{R}$: trivial as $\text{SDiff}(\mathbb{R}, dx^2) = \{\text{Id}_M\}$
- $M = S^1$: also trivial as $\text{SDiff}(S^1, dx^2) = \{\text{translations}\}$
- Baby skyrme fields: $M = R^2$, $N = S^2$ Any rotationally equivariant map $\varphi(rn) = (\cos f(r), \sin f(r)n^B)$ is restricted harmonic

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Stability: second variation of E_2

• $Hess_{\phi}: \Gamma_0(TM) \times \Gamma_0(TM) \to \mathbb{R}$ is the symmetric bilinear form

$$Hess_{\varphi}(X,Y) = \frac{\partial^2 E_2(\varphi \circ \psi_{s,t})}{\partial s \partial t} \bigg|_{s=t=0}$$

where $\psi_{s,t}$ is an arbitrary two-param variation of $\psi_{0,0} = \text{Id}_M$ in SDiff(M,g), with

$$X = \partial_s \psi_{s,0}|_{s=0}, \qquad Y = \partial_t \psi_{0,t}|_{t=0}$$

- コン・4回シュービン・4回シューレー

• φ is stable if $Hess_{\varphi}(X, X) \ge 0$ for all X, unstable otherwise

Theorem

 $Hess_{\varphi}(X,Y) = \frac{1}{2} \langle \mathscr{L}_X \varphi^* h, \mathscr{L}_Y g \rangle_{L^2}$

Doesn't look symmetric, but it is

- Corollary: Let φ have finite E₂ and be weakly conformal. Then φ is stable restricted harmonic
- Proof: $\mathscr{L}_X(\varphi^*h) = \mathscr{L}_X(f^2g) = f^2\mathscr{L}_Xg + X[f^2]g$,so

$$Hess_{\varphi}(X,X) = \frac{1}{2} \| f \mathscr{L}_X g \|_{L^2}^2 + \frac{1}{2} \langle X[f^2]g, \mathscr{L}_X g \rangle_{L^2} = \frac{1}{2} \| f \mathscr{L}_X g \|_{L^2}^2$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

since $\mathscr{L}_{X}g$ is pointwise orthogonal to g.

- In order to be a sensible approximant of a near-BPS Skyrmion in the model E₀ + E₆ + εE₂, φ_{BPS} should be restricted harmonic (and have Hess ≥ 0)
- φ is restricted harmonic iff div $(\varphi^* h)$ is an exact one-form on M
- Whole analysis easily generalizes to E₀ + E₆ + εF, where F(φ, g) is any geometrically natural functional, e.g. E₂ + E₄.
 φ is restricted F-critical iff div (φ*S_F) is exact

 Constructing restricted harmonic maps ℝ³ → S³ is hard. The fields used by ASW, Marleau et al are not restricted harmonic

Concluding remarks

• Finite dimensional analogue: given $\varphi : \mathbb{R}^k \to N$, minimize

 $E_{\varphi}: SL(k,\mathbb{R}) \to \mathbb{R}, \qquad E_{\varphi}(A) = E_2(\varphi \circ A) = \frac{1}{2} \operatorname{tr}(A^T M A)$

where $M_{ij} = \int_{\mathbb{R}^k} \mathscr{D}_{ij} d^k x =$ "average strain matrix"

• Fact: $E_{\varphi}(A) \ge \frac{k}{2} (\det M)^{1/k}$, with equality if and only if $A^T M A = \mu \mathbb{I}_k$, and equality is always attained

• E.g. for $\varphi_B^{ASW} = \varphi_{hedgehog} \circ \psi_B$,

$${\cal A}_B=\left(egin{array}{ccc} \lambda_B&&&\ &\lambda_B&&\ &&\lambda_B^{-2}&\ &&\lambda_B^{-2}\end{array}
ight)$$

- コン・4回シュービン・4回シューレー

where $\lambda_B \to 0$ monotonically as $B \to \infty.$ Squashed BPS Skyrmions

• $E_2(\phi_B^{ASW}) \sim B^{7/3}$ whereas $E_2(\phi_B^{ASW} \circ A_B) \sim B^{5/3}$

- As a natural geometric variational problem, restricted harmonic maps have lots of interesting open questions:
 - cohomological (local/global RHMs)
 - rigidity theory (dimension of the moduli space of RHMs)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• spectral approach to stability...