Quantum dynamics of a CP1 lump on the two-sphere

Martin Speight University of Leeds, UK Joint work with Steffen Krusch (Kent)

16 September 2011

《曰》 《聞》 《臣》 《臣》 三臣 …

 Typical setup: classical field theory, field(s) φ classified homotopically by integer n

- Typical setup: classical field theory, field(s) φ classified homotopically by integer n
- Static energy functional *E*(φ) ≥ *const n*, equality iff field φ satisfies first order "Bogomol'nyi" equations

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Typical setup: classical field theory, field(s) φ classified homotopically by integer n
- Static energy functional *E*(φ) ≥ *const n*, equality iff field φ satisfies first order "Bogomol'nyi" equations
- Moduli space of solns of Bogomol'nyi eqn M_n = smooth manifold, dimension ~ n

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ● ののの

- Typical setup: classical field theory, field(s) φ classified homotopically by integer n
- Static energy functional *E*(φ) ≥ *const n*, equality iff field φ satisfies first order "Bogomol'nyi" equations
- Moduli space of solns of Bogomol'nyi eqn M_n = smooth manifold, dimension ~ n

Low energy dynamics approximated by geodesic motion in M_n

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Typical setup: classical field theory, field(s) φ classified homotopically by integer n
- Static energy functional *E*(φ) ≥ *const n*, equality iff field φ satisfies first order "Bogomol'nyi" equations
- Moduli space of solns of Bogomol'nyi eqn M_n = smooth manifold, dimension ~ n

Low energy dynamics approximated by geodesic motion in M_n

▲□▶▲□▶▲□▶▲□▶ □ のQで

Metric induced by kinetic energy of field theory

- Typical setup: classical field theory, field(s) φ classified homotopically by integer n
- Static energy functional *E*(φ) ≥ *const n*, equality iff field φ satisfies first order "Bogomol'nyi" equations
- Moduli space of solns of Bogomol'nyi eqn M_n = smooth manifold, dimension ~ n

Low energy dynamics approximated by geodesic motion in M_n

- Metric induced by kinetic energy of field theory
- Examples: Yangs-Mills-Higgs (monopoles), abelian Higgs (vortices), O(3) sigma model (CP¹ lumps)

• There's an obvious quantization of geodesic motion on a Riemannian manifold

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Wavefunction $\psi: M_n \to \mathbb{C}$
- Hamiltonian $H_0 = \frac{1}{2}\Delta$

- There's an obvious quantization of geodesic motion on a Riemannian manifold
 - Wavefunction $\psi: M_n \to \mathbb{C}$
 - Hamiltonian $H_0 = \frac{1}{2}\Delta$
- Completely ignores dynamics of normal modes (orthogonal to *M_n*). Shouldn't dependence of normal mode frequencies (i.e. Casimir energy) be taken into account?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- There's an obvious quantization of geodesic motion on a Riemannian manifold
 - Wavefunction $\psi: M_n \to \mathbb{C}$
 - Hamiltonian $H_0 = \frac{1}{2}\Delta$
- Completely ignores dynamics of normal modes (orthogonal to *M_n*). Shouldn't dependence of normal mode frequencies (i.e. Casimir energy) be taken into account?
- Moss and Shiiki (2000) computed Born-Oppenheimer approx for quantum mechanics on soliton moduli space

$$H_{BO} = \frac{1}{2}\Delta + \frac{1}{4}\kappa + \mathscr{C} + \cdots$$

 $\kappa =$ scalar curvature of M_n , $\mathscr{C} =$ Casimir energy

- There's an obvious quantization of geodesic motion on a Riemannian manifold
 - Wavefunction $\psi: M_n \to \mathbb{C}$
 - Hamiltonian $H_0 = \frac{1}{2}\Delta$
- Completely ignores dynamics of normal modes (orthogonal to *M_n*). Shouldn't dependence of normal mode frequencies (i.e. Casimir energy) be taken into account?
- Moss and Shiiki (2000) computed Born-Oppenheimer approx for quantum mechanics on soliton moduli space

$$H_{BO} = \frac{1}{2}\Delta + \frac{1}{4}\kappa + \mathscr{C} + \cdots$$

 $\kappa =$ scalar curvature of M_n , $\mathscr{C} =$ Casimir energy

 Do these corrections change the quantum dynamics qualitatively? E.g. H₀ may have only cts spectrum, H_{BO} only discrete. Or H_{BO} may have extra bound states. Or the degeneracies of energy levels may change. • Test using O(3) sigma model on S²

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• Test using O(3) sigma model on S²

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

• M_n known explicitly (Rat_n)

- Test using O(3) sigma model on S²
 - *M_n* known explicitly (Rat_n)
 - metric on M₁ known explicitly

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

- Test using O(3) sigma model on S²
 - M_n known explicitly (Rat_n)
 - metric on M₁ known explicitly
 - cohomogeneity 1: simple, but not too simple

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

- Test using O(3) sigma model on S²
 - M_n known explicitly (Rat_n)
 - metric on M₁ known explicitly
 - cohomogeneity 1: simple, but not too simple

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

• kähler, but not hyperkähler ($\kappa \neq 0$)

- Test using O(3) sigma model on S²
 - M_n known explicitly (Rat_n)
 - metric on M₁ known explicitly
 - cohomogeneity 1: simple, but not too simple
 - kähler, but not hyperkähler ($\kappa \neq 0$)
 - can compute ${\mathscr C}$ (numerically) using ideas from diff geom

▲□▶▲□▶▲□▶▲□▶ □ のQで

 $\phi: \mathbb{R} \times S^2 \to S^2, \qquad \mathcal{L} = \frac{1}{2} \partial_\mu \phi \cdot \partial^\mu \phi$

$$\varphi: \mathbb{R} \times S^2 \to S^2, \qquad \mathcal{L} = \frac{1}{2} \partial_\mu \varphi \cdot \partial^\mu \varphi$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Lichnerowicz bound for $E = \frac{1}{2} \int_{S^2} |d\phi|^2$

$$\varphi: \mathbb{R} \times S^2 \to S^2, \qquad \mathcal{L} = \frac{1}{2} \partial_\mu \varphi \cdot \partial^\mu \varphi$$

• Lichnerowicz bound for $E = \frac{1}{2} \int_{S^2} |d\phi|^2$

$$0 \quad \leq \quad \frac{1}{2} \int_{\mathcal{S}^2} |\phi \times \phi_x - \phi_y|^2$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

$$\varphi: \mathbb{R} \times S^2 \to S^2, \qquad \mathcal{L} = \frac{1}{2} \partial_\mu \varphi \cdot \partial^\mu \varphi$$

• Lichnerowicz bound for $E = \frac{1}{2} \int_{S^2} |d\phi|^2$

$$0 \leq \frac{1}{2} \int_{S^2} |\phi \times \phi_x - \phi_y|^2$$

= $E(\phi) - \int_{S^2} \phi \cdot (\phi_x \times \phi_y) = E - 4\pi n$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

$$\varphi: \mathbb{R} \times S^2 \to S^2, \qquad \mathcal{L} = \frac{1}{2} \partial_\mu \varphi \cdot \partial^\mu \varphi$$

• Lichnerowicz bound for $E = \frac{1}{2} \int_{S^2} |d\phi|^2$

$$0 \leq \frac{1}{2} \int_{S^2} |\varphi \times \varphi_x - \varphi_y|^2$$

= $E(\varphi) - \int_{S^2} \varphi \cdot (\varphi_x \times \varphi_y) = E - 4\pi n$
 $E \geq 4\pi n$
 $E = 4\pi n \iff \varphi \times \varphi_x = \varphi_y$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$\varphi: \mathbb{R} \times S^2 \to S^2, \qquad \mathcal{L} = \frac{1}{2} \partial_\mu \varphi \cdot \partial^\mu \varphi$$

• Lichnerowicz bound for $E = \frac{1}{2} \int_{S^2} |\mathbf{d} \varphi|^2$

$$0 \leq \frac{1}{2} \int_{S^2} |\varphi \times \varphi_x - \varphi_y|^2$$

= $E(\varphi) - \int_{S^2} \varphi \cdot (\varphi_x \times \varphi_y) = E - 4\pi n$
 $E \geq 4\pi n$
 $E = 4\pi n \qquad \Leftrightarrow \qquad \varphi \times \varphi_x = \varphi_y$
 $\Leftrightarrow \qquad J d\varphi \frac{\partial}{\partial x} = d\varphi J \frac{\partial}{\partial x}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

i.e. iff **o** holomorphic

• So
$$M_n = \operatorname{Rat}_n \subset \mathbb{C}P^{2n+1}$$

 $W(z) = \frac{a_0 + a_1 z + \dots + a_n z^n}{b_0 + b_1 z + \dots + b_n z^n} \leftrightarrow [a_0, \dots, a_n, b_0, \dots, b_n]$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• So
$$M_n = \operatorname{Rat}_n \subset \mathbb{C}P^{2n+1}$$

 $W(z) = \frac{a_0 + a_1 z + \dots + a_n z^n}{b_0 + b_1 z + \dots + b_n z^n} \leftrightarrow [a_0, \dots, a_n, b_0, \dots, b_n]$

• Rat₁ \cong *PSL*(2, \mathbb{C}) $\frac{a_1z + a_0}{b_1z + b_0} \leftrightarrow \pm \begin{pmatrix} a_1 & a_0 \\ b_1 & b_0 \end{pmatrix}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• So
$$M_n = \operatorname{Rat}_n \subset \mathbb{C}P^{2n+1}$$

 $W(z) = \frac{a_0 + a_1 z + \dots + a_n z^n}{b_0 + b_1 z + \dots + b_n z^n} \leftrightarrow [a_0, \dots, a_n, b_0, \dots, b_n]$

• Rat₁ \cong *PSL*(2, \mathbb{C}) $\frac{a_1z+a_0}{b_1z+b_0} \leftrightarrow \pm \begin{pmatrix} a_1 & a_0 \\ b_1 & b_0 \end{pmatrix}$

• $PSL(2,\mathbb{C}) \cong PU(2) \times \mathbb{R}^3 \cong SO(3) \times \mathbb{R}^3$ $\begin{pmatrix} a_1 & a_0 \\ b_1 & b_0 \end{pmatrix} = UH = U(\sqrt{1+\lambda^2}\mathbb{I}_2 + \vec{\lambda} \cdot \vec{\tau})$ ▲□▶▲□▶▲□▶▲□▶ □ のへで

• Physically $(\pm U, \vec{\lambda}) \leftrightarrow$ lump at $-\vec{\lambda}/\lambda \in S^2$, of "sharpness" λ

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

• Physically $(\pm U, \vec{\lambda}) \leftrightarrow$ lump at $-\vec{\lambda}/\lambda \in S^2$, of "sharpness" λ

• Left SO(3) action (isorotation):

 $(\pm U, \vec{\lambda}) \stackrel{\pm L}{\mapsto} (\pm LU, \vec{\lambda})$

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

• Physically $(\pm U, \vec{\lambda}) \leftrightarrow$ lump at $-\vec{\lambda}/\lambda \in S^2$, of "sharpness" λ

• Left SO(3) action (isorotation):

 $(\pm U, \vec{\lambda}) \stackrel{\pm L}{\mapsto} (\pm LU, \vec{\lambda})$

• Right SO(3) action (spatial rotation):

 $(\pm U, \vec{\lambda}) \stackrel{\pm R}{\mapsto} (\pm UR, \mathscr{R}\vec{\lambda})$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Physically $(\pm U, \vec{\lambda}) \leftrightarrow$ lump at $-\vec{\lambda}/\lambda \in S^2$, of "sharpness" λ

• Left SO(3) action (isorotation):

 $(\pm U, \vec{\lambda}) \stackrel{\pm L}{\mapsto} (\pm LU, \vec{\lambda})$

• Right SO(3) action (spatial rotation):

 $(\pm U, \vec{\lambda}) \stackrel{\pm R}{\mapsto} (\pm UR, \mathscr{R}\vec{\lambda})$

 $\int_{S^2} \boldsymbol{\varphi}_t \cdot \boldsymbol{\varphi}_t$

Natural metric on Rat₁ assigns squared length

to the tangent vector to any curve $\varphi(t)$ in Rat₁ ・□ ▶ ・ □ ▶ ・ □ ▶ ・ □ ▶ ・ □ ● ・ の < @

• It's kähler, and invariant under both SO(3) actions:

 $\gamma = A_1 d\vec{\lambda} \cdot d\vec{\lambda} + A_2 (\vec{\lambda} \cdot d\vec{\lambda})^2 + A_3 \vec{\sigma} \cdot \vec{\sigma} + A_4 (\vec{\lambda} \cdot \vec{\sigma})^2 + A_1 \vec{\lambda} \cdot (\vec{\sigma} \times d\vec{\lambda})$

- コン・4回シュービン・4回シューレー

where $A_i(\lambda)$ all determined by a single function $A(\lambda)$

• It's kähler, and invariant under both SO(3) actions:

 $\gamma = A_1 d\vec{\lambda} \cdot d\vec{\lambda} + A_2 (\vec{\lambda} \cdot d\vec{\lambda})^2 + A_3 \vec{\sigma} \cdot \vec{\sigma} + A_4 (\vec{\lambda} \cdot \vec{\sigma})^2 + A_1 \vec{\lambda} \cdot (\vec{\sigma} \times d\vec{\lambda})$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

where $A_i(\lambda)$ all determined by a single function $A(\lambda)$

• Explicit formula for $A(\lambda)$

• It's kähler, and invariant under both SO(3) actions:

 $\gamma = A_1 d\vec{\lambda} \cdot d\vec{\lambda} + A_2 (\vec{\lambda} \cdot d\vec{\lambda})^2 + A_3 \vec{\sigma} \cdot \vec{\sigma} + A_4 (\vec{\lambda} \cdot \vec{\sigma})^2 + A_1 \vec{\lambda} \cdot (\vec{\sigma} \times d\vec{\lambda})$

- コン・4回シュービン・4回シューレー

where $A_i(\lambda)$ all determined by a single function $A(\lambda)$

- Explicit formula for $A(\lambda)$
- Incomplete with finite volume and diameter

• It's kähler, and invariant under both SO(3) actions:

 $\gamma = A_1 d\vec{\lambda} \cdot d\vec{\lambda} + A_2 (\vec{\lambda} \cdot d\vec{\lambda})^2 + A_3 \vec{\sigma} \cdot \vec{\sigma} + A_4 (\vec{\lambda} \cdot \vec{\sigma})^2 + A_1 \vec{\lambda} \cdot (\vec{\sigma} \times d\vec{\lambda})$

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ● ののの

where $A_i(\lambda)$ all determined by a single function $A(\lambda)$

- Explicit formula for $A(\lambda)$
- Incomplete with finite volume and diameter
- Ricci positive with unbounded scalar curvature $\kappa(\lambda)$

The laplacian on Rat₁

• Explicit differential operator on $SO(3) \times \mathbb{R}^3$

$$\Delta f = -B_1 \left\{ \vec{\theta} \cdot \vec{\theta} f + \vec{\lambda} \cdot (\vec{\partial} \times \vec{\theta}) f - B_2 (\vec{\lambda} \cdot \vec{\theta})^2 f \right\}$$
$$-B_3 \frac{\partial}{\partial \lambda} \left(B_4 \frac{\partial f}{\partial \lambda} \right) - B_5 (\vec{\lambda} \times \vec{\partial}) \cdot (\vec{\lambda} \times \vec{\partial}) f$$

where $\partial_a = \frac{\partial}{\partial \lambda_a}$, $\theta_a =$ usual left-invariant vector fields on *SO*(3), $B_i(\lambda)$ explicitly known

- コン・4回シュービン・4回シューレー
• Explicit differential operator on $SO(3) \times \mathbb{R}^3$

$$\Delta f = -B_1 \left\{ \vec{\theta} \cdot \vec{\theta} f + \vec{\lambda} \cdot (\vec{\partial} \times \vec{\theta}) f - B_2 (\vec{\lambda} \cdot \vec{\theta})^2 f \right\}$$
$$-B_3 \frac{\partial}{\partial \lambda} \left(B_4 \frac{\partial f}{\partial \lambda} \right) - B_5 (\vec{\lambda} \times \vec{\partial}) \cdot (\vec{\lambda} \times \vec{\partial}) f$$

where $\partial_a = \frac{\partial}{\partial \lambda_a}$, $\theta_a =$ usual left-invariant vector fields on *SO*(3), $B_i(\lambda)$ explicitly known

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Ohecks:
 - McGlade computed Δ on invariant functions $f(\lambda)$

Explicit differential operator on SO(3) × ℝ³

$$\Delta f = -B_1 \left\{ \vec{\theta} \cdot \vec{\theta} f + \vec{\lambda} \cdot (\vec{\partial} \times \vec{\theta}) f - B_2 (\vec{\lambda} \cdot \vec{\theta})^2 f \right\} -B_3 \frac{\partial}{\partial \lambda} \left(B_4 \frac{\partial f}{\partial \lambda} \right) - B_5 (\vec{\lambda} \times \vec{\partial}) \cdot (\vec{\lambda} \times \vec{\partial}) f$$

where $\partial_a = \frac{\partial}{\partial \lambda_a}$, $\theta_a =$ usual left-invariant vector fields on *SO*(3), $B_i(\lambda)$ explicitly known

- コン・4回シュービン・4回シューレー

- Checks:
 - McGlade computed Δ on invariant functions $f(\lambda)$
 - For different choice of $A(\lambda)$, should coincide with $\Delta_{\mathbb{C}P^3}$

Explicit differential operator on SO(3) × ℝ³

$$\Delta f = -B_1 \left\{ \vec{\Theta} \cdot \vec{\Theta} f + \vec{\lambda} \cdot (\vec{\partial} \times \vec{\Theta}) f - B_2 (\vec{\lambda} \cdot \vec{\Theta})^2 f \right\}$$
$$-B_3 \frac{\partial}{\partial \lambda} \left(B_4 \frac{\partial f}{\partial \lambda} \right) - B_5 (\vec{\lambda} \times \vec{\partial}) \cdot (\vec{\lambda} \times \vec{\partial}) f$$

where $\partial_a = \frac{\partial}{\partial \lambda_a}$, $\theta_a =$ usual left-invariant vector fields on *SO*(3), $B_i(\lambda)$ explicitly known

- Ohecks:
 - McGlade computed Δ on invariant functions $f(\lambda)$
 - For different choice of $A(\lambda)$, should coincide with $\Delta_{\mathbb{C}P^3}$
 - ▲ should commute with Killing vector fields generating left and right SO(3) actions

Explicit differential operator on SO(3) × ℝ³

$$\Delta f = -B_1 \left\{ \vec{\theta} \cdot \vec{\theta} f + \vec{\lambda} \cdot (\vec{\partial} \times \vec{\theta}) f - B_2 (\vec{\lambda} \cdot \vec{\theta})^2 f \right\} -B_3 \frac{\partial}{\partial \lambda} \left(B_4 \frac{\partial f}{\partial \lambda} \right) - B_5 (\vec{\lambda} \times \vec{\partial}) \cdot (\vec{\lambda} \times \vec{\partial}) f$$

where $\partial_a = \frac{\partial}{\partial \lambda_a}$, $\theta_a =$ usual left-invariant vector fields on *SO*(3), $B_i(\lambda)$ explicitly known

- Checks:
 - McGlade computed Δ on invariant functions $f(\lambda)$
 - For different choice of $A(\lambda)$, should coincide with $\Delta_{\mathbb{C}P^3}$
 - ▲ should commute with Killing vector fields generating left and right SO(3) actions

Left:
$$\xi_a, \qquad [\xi_a, heta_b] = [\xi_a, \partial_b] = 0, \quad \xi_a(\lambda) = 0$$

Explicit differential operator on SO(3) × ℝ³

$$\Delta f = -B_1 \left\{ \vec{\Theta} \cdot \vec{\Theta} f + \vec{\lambda} \cdot (\vec{\partial} \times \vec{\Theta}) f - B_2 (\vec{\lambda} \cdot \vec{\Theta})^2 f \right\}$$
$$-B_3 \frac{\partial}{\partial \lambda} \left(B_4 \frac{\partial f}{\partial \lambda} \right) - B_5 (\vec{\lambda} \times \vec{\partial}) \cdot (\vec{\lambda} \times \vec{\partial}) f$$

where $\partial_a = \frac{\partial}{\partial \lambda_a}$, $\theta_a =$ usual left-invariant vector fields on *SO*(3), $B_i(\lambda)$ explicitly known

- Checks:
 - McGlade computed Δ on invariant functions $f(\lambda)$
 - For different choice of $A(\lambda)$, should coincide with $\Delta_{\mathbb{C}P^3}$
 - ▲ should commute with Killing vector fields generating left and right SO(3) actions

Left: ξ_a , $[\xi_a, \theta_b] = [\xi_a, \partial_b] = 0$, $\xi_a(\lambda) = 0$ Right: $X_a = \theta_a + \varepsilon_{abc} \lambda_b \partial_c$

• Define angular momentum operators

 $\vec{J} = -i\vec{\Theta}, \quad \vec{K} = -i\vec{\xi}, \quad \vec{L} = -i\vec{\lambda} \times \vec{\partial}, \quad \vec{T} = \vec{J} + \vec{L} = -i\vec{X}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Recall Δ commutes with \vec{k} and \vec{T} .

• Define angular momentum operators

 $\vec{J} = -i\vec{\Theta}, \quad \vec{K} = -i\vec{\xi}, \quad \vec{L} = -i\vec{\lambda} \times \vec{\partial}, \quad \vec{T} = \vec{J} + \vec{L} = -i\vec{X}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall Δ commutes with \vec{K} and \vec{T} .

• $\vec{J} \cdot \vec{J} = \vec{K} \cdot \vec{K}$, so Δ commutes with $\vec{J} \cdot \vec{J}$

• Define angular momentum operators

 $\vec{J} = -i\vec{\Theta}, \quad \vec{K} = -i\vec{\xi}, \quad \vec{L} = -i\vec{\lambda} \times \vec{\partial}, \quad \vec{T} = \vec{J} + \vec{L} = -i\vec{X}$

Recall Δ commutes with \vec{k} and $\vec{\tau}$.

• $\vec{J} \cdot \vec{J} = \vec{K} \cdot \vec{K}$, so Δ commutes with $\vec{J} \cdot \vec{J}$

• Laplacian in physics language

$$\Delta f = -B_1 \frac{\partial}{\partial \lambda} \left(B_2 \frac{\partial f}{\partial \lambda} \right) + B_3 \vec{L} \cdot \vec{L} f + B_4 \{ \vec{J} \cdot \vec{J} + \vec{T} \cdot \vec{T} + B_5 (\vec{\lambda} \cdot \vec{T})^2 \} f$$

• Define angular momentum operators

 $\vec{J} = -i\vec{\Theta}, \quad \vec{K} = -i\vec{\xi}, \quad \vec{L} = -i\vec{\lambda} \times \vec{\partial}, \quad \vec{T} = \vec{J} + \vec{L} = -i\vec{X}$

Recall Δ commutes with \vec{k} and $\vec{\tau}$.

• $\vec{J} \cdot \vec{J} = \vec{K} \cdot \vec{K}$, so Δ commutes with $\vec{J} \cdot \vec{J}$

Laplacian in physics language

$$\Delta f = -B_1 \frac{\partial}{\partial \lambda} \left(B_2 \frac{\partial f}{\partial \lambda} \right) + B_3 \vec{L} \cdot \vec{L} f + B_4 \{ \vec{J} \cdot \vec{J} + \vec{T} \cdot \vec{T} + B_5 (\vec{\lambda} \cdot \vec{T})^2 \} f$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Wavefunction $\psi : [0,\infty) \times S^2 \times SO(3) \rightarrow \mathbb{C}$

• Define angular momentum operators

 $\vec{J} = -i\vec{\Theta}, \quad \vec{K} = -i\vec{\xi}, \quad \vec{L} = -i\vec{\lambda} \times \vec{\partial}, \quad \vec{T} = \vec{J} + \vec{L} = -i\vec{X}$

Recall Δ commutes with \vec{k} and $\vec{\tau}$.

- $\vec{J} \cdot \vec{J} = \vec{K} \cdot \vec{K}$, so Δ commutes with $\vec{J} \cdot \vec{J}$
- Laplacian in physics language

$$\Delta f = -B_1 \frac{\partial}{\partial \lambda} \left(B_2 \frac{\partial f}{\partial \lambda} \right) + B_3 \vec{L} \cdot \vec{L} f + B_4 \{ \vec{J} \cdot \vec{J} + \vec{T} \cdot \vec{T} + B_5 (\vec{\lambda} \cdot \vec{T})^2 \} f$$

- Wavefunction $\psi:[0,\infty)\times\textit{S}^2\times\textit{SO}(3)\rightarrow\mathbb{C}$
- Expand S^2 dependence in spherical harmonics Y_{I_3}

$$\vec{L} \cdot \vec{L} Y_{ll_3} = l(l+1) Y_{ll_3}, \qquad L_3 Y_{ll_3} = l_3 Y_{ll_3}$$

Peter-Weyl Theorem: matrix elements of unitary irreps of SO(3) form an orthornormal basis for L²(SO(3))

- Peter-Weyl Theorem: matrix elements of unitary irreps of SO(3) form an orthornormal basis for L²(SO(3))
 - irreps labelled by $j \in \mathbb{N}$

- Peter-Weyl Theorem: matrix elements of unitary irreps of SO(3) form an orthornormal basis for L²(SO(3))
 - irreps labelled by $j \in \mathbb{N}$
 - *j*-irrep has dimension 2j + 1, hence $(2j + 1)^2$ matrix elements

$$\pi^{(j)}_{j_3,k_3}:SO(3)
ightarrow\mathbb{C},\qquad -j\leq j_3,k_3\leq j$$

- Peter-Weyl Theorem: matrix elements of unitary irreps of SO(3) form an orthornormal basis for L²(SO(3))
 - irreps labelled by $j \in \mathbb{N}$
 - *j*-irrep has dimension 2j + 1, hence $(2j + 1)^2$ matrix elements

$$\pi^{(j)}_{j_3,k_3}:SO(3)
ightarrow\mathbb{C},\qquad -j\leq j_3,k_3\leq j$$

• \vec{J}, \vec{K} act naturally on $\pi_{j_3, k_3}^{(j)}$:

 $\vec{J}\cdot\vec{J}\pi_{j_3,k_3}^{(j)} = \vec{K}\cdot\vec{K}\pi_{j_3,k_3}^{(j)} = j(j+1)\pi_{j_3,k_3}^{(j)},$

- Peter-Weyl Theorem: matrix elements of unitary irreps of SO(3) form an orthornormal basis for L²(SO(3))
 - irreps labelled by $j \in \mathbb{N}$
 - *j*-irrep has dimension 2j + 1, hence $(2j + 1)^2$ matrix elements

$$\pi^{(j)}_{j_3,k_3}:SO(3)
ightarrow\mathbb{C},\qquad -j\leq j_3,k_3\leq j$$

• \vec{J}, \vec{K} act naturally on $\pi_{j_3, k_3}^{(j)}$:

 $\vec{J} \cdot \vec{J} \pi_{j_3,k_3}^{(j)} = \vec{K} \cdot \vec{K} \pi_{j_3,k_3}^{(j)} = j(j+1)\pi_{j_3,k_3}^{(j)}, \quad J_3 \pi_{j_3,k_3}^{(j)} = j_3 \pi_{j_3,k_3}^{(j)},$

- Peter-Weyl Theorem: matrix elements of unitary irreps of SO(3) form an orthornormal basis for L²(SO(3))
 - irreps labelled by $j \in \mathbb{N}$
 - *j*-irrep has dimension 2j + 1, hence $(2j + 1)^2$ matrix elements

$$\pi^{(j)}_{j_3,k_3}:SO(3)
ightarrow\mathbb{C},\qquad -j\leq j_3,k_3\leq j$$

• \vec{J}, \vec{K} act naturally on $\pi_{j_3, k_3}^{(j)}$:

 $\vec{J} \cdot \vec{J} \pi_{j_3,k_3}^{(j)} = \vec{K} \cdot \vec{K} \pi_{j_3,k_3}^{(j)} = j(j+1)\pi_{j_3,k_3}^{(j)}, \quad J_3 \pi_{j_3,k_3}^{(j)} = j_3 \pi_{j_3,k_3}^{(j)}, \quad K_3 \pi_{j_3,k_3}^{(j)} = k_3 \pi_{j_3,k_3}^{(j)}$

- Peter-Weyl Theorem: matrix elements of unitary irreps of SO(3) form an orthornormal basis for L²(SO(3))
 - irreps labelled by $j \in \mathbb{N}$
 - *j*-irrep has dimension 2j + 1, hence $(2j + 1)^2$ matrix elements

$$\pi^{(j)}_{j_3,k_3}:SO(3)
ightarrow\mathbb{C},\qquad -j\leq j_3,k_3\leq j$$

• \vec{J}, \vec{K} act naturally on $\pi_{j_3, k_3}^{(j)}$:

 $\vec{J} \cdot \vec{J} \pi_{j_3,k_3}^{(j)} = \vec{K} \cdot \vec{K} \pi_{j_3,k_3}^{(j)} = j(j+1)\pi_{j_3,k_3}^{(j)}, \quad J_3 \pi_{j_3,k_3}^{(j)} = j_3 \pi_{j_3,k_3}^{(j)}, \quad K_3 \pi_{j_3,k_3}^{(j)} = k_3 \pi_{j_3,k_3}^{(j)}$

• Expand SO(3) dependence in $\pi_{i_3,k_3}^{(j)}$

$$\Psi = \sum_{j \in \mathbb{N}} \sum_{j_3 = -j}^{j} \sum_{k_3 = -j}^{j} \sum_{l \in \mathbb{N}} \sum_{l_3 = -l}^{l} A_{j_3 k_3 l_3}^{jl}(\lambda) \pi_{j_3 k_3}^{(j)} Y_{ll_3}$$

•
$$[\vec{K} \cdot \vec{K}, \Delta] = [K_3, \Delta] = 0$$
 so Δ preserves *j* and k_3

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- $[\vec{K} \cdot \vec{K}, \Delta] = [K_3, \Delta] = 0$ so Δ preserves *j* and k_3
- ∆ independent of k₃: can set k₃ = 0 and multiply degeneracies by 2j + 1

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

- $[\vec{K} \cdot \vec{K}, \Delta] = [K_3, \Delta] = 0$ so Δ preserves *j* and k_3
- Δ independent of k_3 : can set $k_3 = 0$ and multiply degeneracies by 2j + 1
- $[\vec{T} \cdot \vec{T}, \Delta] = [T_3, \Delta] = 0$, so Δ also preserves eigenspaces of $\vec{T} \cdot \vec{T}$, labelled by $t \in \mathbb{N}$, and T_3 labelled by $-t \le t_3 \le t$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- $[\vec{K} \cdot \vec{K}, \Delta] = [K_3, \Delta] = 0$ so Δ preserves *j* and k_3
- Δ independent of k_3 : can set $k_3 = 0$ and multiply degeneracies by 2j + 1
- $[\vec{T} \cdot \vec{T}, \Delta] = [T_3, \Delta] = 0$, so Δ also preserves eigenspaces of $\vec{T} \cdot \vec{T}$, labelled by $t \in \mathbb{N}$, and T_3 labelled by $-t \le t_3 \le t$
- Does **not** preserve *I*, *I*₃ or *j*₃. Standard angular momentum algebra: there exists a basis $|t, j, I, t_3\rangle$ for the space

$$\mathscr{V}_{jt} = \bigoplus_{j_3 = -j}^{j} \bigoplus_{l=|j-t|}^{|j+t|} \bigoplus_{l_3 = -l}^{l} \pi_{j_3 0}^{(j)} Y_{ll_3}$$

such that

$$\begin{aligned} \vec{T} \cdot \vec{T} | t, j, l, t_3 \rangle &= t(t+1) | t, j, l, t_3 \rangle \\ \vec{J} \cdot \vec{J} | t, j, l, t_3 \rangle &= j(j+1) | t, j, l, t_3 \rangle \\ \vec{L} \cdot \vec{L} | t, j, l, t_3 \rangle &= l(l+1) | t, j, l, t_3 \rangle \\ T_3 | t, j, l, t_3 \rangle &= t_3 | t, j, l, t_3 \rangle \end{aligned}$$

- $[\Delta, T_3] = 0$ so Δ preserves T_3 eigenspace $\mathscr{V}_{jtt_3}, -t \leq t_3 \leq t$.
- Spectral problem for H₀ = ½Δ reduces to infinite sequence of vector Sturm-Liouville problems for maps ψ : [0,∞) → 𝒱_{jt0}, vector space of dimension 2 min{j,t} + 1, spanned by

$$|t,j,l,0\rangle$$
 $|j-t| \le l \le j+t$

 Boundary conditions at λ = 0, λ = ∞: standard SL classification applies. Worst case: LCN

• Spectrum of $H_0 = \frac{1}{2}\Delta$ computed numerically

energy	degeneracy	$\{j,t\}^P$
0.00	1	$\{0,0\}^+$
1.06	6	$\{0,1\}^{-}$
1.46	9	$\{1,1\}^{-}$
2.30	1	$\{0,0\}^+$
2.72	9	$\{1,1\}^{-}$
2.76	10	$\{0,2\}^+$
3.05	9	$\{1,1\}^+$
3.18	30	{ 1 , 2 } ⁺
3.91	25	{ 2 , 2 } ⁻
4.30	6	$\{0,1\}^-$
4.93	9	$\{1,1\}^{-}$
5.01	30	$\{1,2\}^+$
5.11	14	$\{0,3\}^-$
5.33	30	{1,2}-

$$H_{BO} = H_0 + \frac{1}{4}\kappa(\lambda) + \mathscr{C}(\lambda) + \cdots$$

Don't break SO(3) × SO(3) symmetry: reduction to finite dim SL problems unchanged

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$H_{BO} = H_0 + \frac{1}{4}\kappa(\lambda) + \mathscr{C}(\lambda) + \cdots$$

- Don't break SO(3) × SO(3) symmetry: reduction to finite dim SL problems unchanged
- Scalar curvature $\kappa(\lambda)$ known explicitly

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$H_{BO} = H_0 + \frac{1}{4}\kappa(\lambda) + \mathscr{C}(\lambda) + \cdots$$

- Don't break SO(3) × SO(3) symmetry: reduction to finite dim SL problems unchanged
- Scalar curvature $\kappa(\lambda)$ known explicitly

▲□▶▲□▶▲□▶▲□▶ □ のQで

Changes BCs at ∞ (but not radically)

$$H_{BO} = H_0 + \frac{1}{4}\kappa(\lambda) + \mathscr{C}(\lambda) + \cdots$$

- Don't break SO(3) × SO(3) symmetry: reduction to finite dim SL problems unchanged
- Scalar curvature $\kappa(\lambda)$ known explicitly

- Changes BCs at ∞ (but not radically)
- Casimir energy $\mathscr{C}(\lambda)$ much murkier

 $\mathscr{C} = \frac{1}{2} \sum_{i} \omega_i$

• $\omega_i(\lambda) =$ normal mode frequencies

$$\mathscr{C} = \frac{1}{2} \sum_{i} \omega_i$$

- $\omega_i(\lambda)$ = normal mode frequencies
- $E = \frac{1}{2} \int_{M} |d\phi|^2$ Dirichlet energy of map $\phi: M \to N$ ($M = N = S^2$)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$\mathscr{C} = \frac{1}{2} \sum_{i} \omega_i$$

- $\omega_i(\lambda) =$ normal mode frequencies
- $E = \frac{1}{2} \int_{M} |d\phi|^2$ Dirichlet energy of map $\phi : M \to N$ ($M = N = S^2$)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• ϕ holomorphic \Rightarrow global min of *E*

$$\mathscr{C} = \frac{1}{2} \sum_{i} \omega_i$$

- $\omega_i(\lambda) =$ normal mode frequencies
- $E = \frac{1}{2} \int_{M} |d\phi|^2$ Dirichlet energy of map $\phi : M \to N$ ($M = N = S^2$)
- ϕ holomorphic \Rightarrow global min of *E*
- Second variation: $\phi_s: M \to N$

$$\frac{d^2 E(\varphi_s)}{ds^2}\Big|_{s=0} = \langle X, J_{\varphi}X \rangle_{L^2}, \qquad X = \partial_s \varphi_s|_{s=0} \in \mathsf{F}(\varphi^{-1} TN)$$

$$\mathscr{C} = \frac{1}{2} \sum_{i} \omega_i$$

- $\omega_i(\lambda)$ = normal mode frequencies
- $E = \frac{1}{2} \int_{M} |d\phi|^2$ Dirichlet energy of map $\phi : M \to N$ ($M = N = S^2$)
- ϕ holomorphic \Rightarrow global min of *E*
- Second variation: $\phi_s: M \to N$

$$\frac{d^2 E(\varphi_s)}{ds^2}\Big|_{s=0} = \langle X, J_{\varphi}X \rangle_{L^2}, \qquad X = \partial_s \varphi_s|_{s=0} \in \mathsf{F}(\varphi^{-1} TN)$$

• $J_{\phi} =$ Jacobi operator, eigenvalues ω_i^2

 $J_{\varphi}X = \Delta_{\varphi}X - R_{\varphi}X, \qquad R_{\varphi}X = \operatorname{trace}(R^{N}(\mathrm{d}\varphi \cdot, X)\mathrm{d}\varphi \cdot)$

$$\mathscr{C} = \frac{1}{2} \sum_{i} \omega_i$$

- $\omega_i(\lambda) =$ normal mode frequencies
- $E = \frac{1}{2} \int_{M} |d\phi|^2$ Dirichlet energy of map $\phi : M \to N$ ($M = N = S^2$)
- ϕ holomorphic \Rightarrow global min of *E*
- Second variation: $\phi_s: M \to N$

$$\frac{d^2 E(\varphi_s)}{ds^2}\Big|_{s=0} = \langle X, J_{\varphi}X \rangle_{L^2}, \qquad X = \partial_s \varphi_s|_{s=0} \in \mathsf{F}(\varphi^{-1} TN)$$

• $J_{\phi} =$ Jacobi operator, eigenvalues ω_i^2

 $J_{\varphi}X = \Delta_{\varphi}X - R_{\varphi}X, \qquad R_{\varphi}X = \operatorname{trace}(R^{N}(\mathrm{d}\varphi \cdot, X)\mathrm{d}\varphi \cdot)$

SO(2) symmetry: reduces to infinite sequence of scalar SL problems on interval θ ∈ [0, π]. Numerics → ω²_i(λ).

• Explicit computation of spectrum possible in two cases:

- Explicit computation of spectrum possible in two cases:
 - $\lambda = 0$: $\phi = Id : S^2 \rightarrow S^2$, $\phi^{-1}TN \cong T^*M$

$$\begin{array}{lll} J_{\phi} & = & \Delta_{\text{one-forms}}-2 \\ \omega_{\ell}^2 & = & \ell(\ell+1)-2, & \text{multiplicity} = 4\ell+2, & \ell \in \mathbb{Z}^+ \end{array}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Explicit computation of spectrum possible in two cases:
 - $\bullet \ \lambda = 0; \ \phi = \mathrm{Id}: \mathcal{S}^2 \to \mathcal{S}^2, \ \phi^{-1} \mathit{TN} \cong \mathit{T^*M}$

$$\begin{array}{lll} J_{\phi} & = & \Delta_{\text{one-forms}}-2 \\ \omega_{\ell}^2 & = & \ell(\ell+1)-2, & \text{multiplicity} = 4\ell+2, & \ell \in \mathbb{Z}^+ \end{array}$$

•
$$\lambda = \infty$$
: $\varphi = \varphi_0 = const$,

$$\begin{array}{lll} J_{\phi} & = & \Delta_{functions} \otimes \operatorname{Id}_{\mathcal{T}_{\phi_0}S^2} \\ \omega_{\ell}^2 & = & \ell(\ell+1), & \text{multiplicity} = 4\ell+2, & \ell \in \mathbb{Z}^+ \end{array} (\text{almost}) \end{array}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●
- Explicit computation of spectrum possible in two cases:
 - $\lambda = 0$: $\phi = Id : S^2 \rightarrow S^2$, $\phi^{-1} TN \cong T^*M$

$$\begin{array}{lll} J_{\phi} & = & \Delta_{\text{one-forms}}-2 \\ \omega_{\ell}^2 & = & \ell(\ell+1)-2, & \text{multiplicity} = 4\ell+2, & \ell \in \mathbb{Z}^+ \end{array}$$

• $\lambda = \infty$: $\varphi = \varphi_0 = const$,

$$\begin{array}{lll} J_{\phi} & = & \Delta_{functions} \otimes \mathrm{Id}_{\mathcal{T}_{\phi_0} \mathcal{S}^2} \\ & \omega_{\ell}^2 & = & \ell(\ell+1), & \text{multiplicity} = 4\ell+2, & \ell \in \mathbb{Z}^+ \end{array} (\text{almost}) \end{array}$$

• ζ -function regularization \rightarrow finite renormalized Casimir energies $\mathscr{C}^0_*, \mathscr{C}^\infty_*$ for these two spectra

• Cut off divergent infinite sum

$$\mathscr{C}_k(\lambda) = \frac{1}{2} \sum_{i=1}^k (\omega_i(\lambda) - \omega_i(\infty)), \qquad k = 10, 24, 42, \dots, 4\ell + 2, \dots$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

include whole eigenspaces at $\lambda=0$

Cut off divergent infinite sum

 $\mathscr{C}_k(\lambda) = \frac{1}{2} \sum_{i=1}^k (\omega_i(\lambda) - \omega_i(\infty)), \qquad k = 10, 24, 42, \dots, 4\ell + 2, \dots$

include whole eigenspaces at $\lambda = 0$

Approximate scale similarity

Cut off divergent infinite sum

 $\mathscr{C}_k(\lambda) = \frac{1}{2} \sum_{i=1}^k (\omega_i(\lambda) - \omega_i(\infty)), \qquad k = 10, 24, 42, \ldots, 4\ell + 2, \ldots$

include whole eigenspaces at $\lambda = 0$

Approximate scale similarity

• Approximation: $\mathscr{C}(\lambda) = (\mathscr{C}^0_* - \mathscr{C}^\infty_*) \mathscr{C}_{10}(\lambda)$

Cut off divergent infinite sum

 $\mathscr{C}_k(\lambda) = \frac{1}{2} \sum_{i=1}^k (\omega_i(\lambda) - \omega_i(\infty)), \qquad k = 10, 24, 42, \ldots, 4\ell + 2, \ldots$

include whole eigenspaces at $\lambda=0$

Approximate scale similarity

- Approximation: $\mathscr{C}(\lambda) = (\mathscr{C}^0_* \mathscr{C}^\infty_*) \mathscr{C}_{10}(\lambda)$
- $\mathscr{C}(\lambda)$ just a bounded potential: doesn't change BCs

Comparison of spectra

energy	degeneracy	$\{j,t\}^P$	energy	degeneracy	$\{j,t\}^P$	energy	degeneracy	$\{j,t\}^P$
0.00	1	{0,0}+	1.79	1	{0,0}+	0.58	1	{0,0}+
1.06	6	{0,1}-	3.00	6	$\{0,1\}^{-}$	1.89	6	{0,1}-
1.46	9	{1,1}-	3.18	9	$\{1,1\}^{-}$	1.93	9	$\{1,1\}^{-}$
2.30	1	{0,0}+	4.26	1	$\{0,0\}^+$	2.93	1	{0,0}+
2.72	9	{1,1}-	4.65	9	$\{1,1\}^{-}$	3.49	9	$\{1,1\}^{-}$
2.76	10	{0,2}+	4.68*	9	$\{1,1\}^+$	3.51*	9	{1,1}+
3.05	9	{1,1}+	4.84*	10	{0,2}+	3.76*	10	{0,2}+
3.18	30	{1,2}+	5.07	30	$\{1,2\}^+$	3.95	30	{1,2}+
3.91	25	{2,2}-	5.56	25	$\{2,2\}^{-}$	4.25	25	{2,2} ⁻
4.30	6	{0,1}	6.36	6	$\{0,1\}^{-}$	5.07	6	{0,1}-
4.93	9	{1,1}-	6.64	9	$\{1,1\}^{-}$	5.39	9	$\{1,1\}^{-}$
5.01	30	{1,2}+	6.96	30	$\{1,2\}^+$	5.81	30	{1,2}+
5.11	14	{0,3}-	7.01*	30	{1,2}-	5.91*	30	{1,2}-
5.33	30	{1,2}-	7.30*	14	{0,3}-	6.22*	14	{0,3} ⁻
5.42	25	{2,2}-	7.44	25	$\{2,2\}^{-}$	6.24	25	$\{2,2\}^{-}$
5.52	42	{1,3}-	7.57	42	{1,3} ⁻	6.44*	25	{2,2}+
6.06	25	{2,2}+	7.66	25	$\{2,2\}^+$	6.48*	42	{1,3} ⁻
6.30	70	{2,3}+	8.10	70	$\{2,3\}^+$	6.96	70	$\{2,3\}^+$
6.46	1	{0,0}+	8.55	1	$\{0,0\}^+$	7.22	1	$\{0,0\}^+$

• Low energy spectra rather similar

Comparison of spectra

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

 O(3) sigma model on S² is useful "laboratory" for studying semiclassical quantization of solitons

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 O(3) sigma model on S² is useful "laboratory" for studying semiclassical quantization of solitons

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Geometry of M₁ is simple - but not too simple

 O(3) sigma model on S² is useful "laboratory" for studying semiclassical quantization of solitons

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Geometry of *M*₁ is simple but not too simple
- BO corrections can be computed (almost) explicitly

- O(3) sigma model on S² is useful "laboratory" for studying semiclassical quantization of solitons
- Geometry of *M*₁ is simple but not too simple
- BO corrections can be computed (almost) explicitly
- SO(3) × SO(3) symmetry reduces everything to Sturm-Liouville

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- O(3) sigma model on S² is useful "laboratory" for studying semiclassical quantization of solitons
- Geometry of M₁ is simple but not too simple
- BO corrections can be computed (almost) explicitly
- SO(3) × SO(3) symmetry reduces everything to Sturm-Liouville

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Corrections don't change low energy spectrum drastically

- O(3) sigma model on S² is useful "laboratory" for studying semiclassical quantization of solitons
- Geometry of M₁ is simple but not too simple
- BO corrections can be computed (almost) explicitly
- SO(3) × SO(3) symmetry reduces everything to Sturm-Liouville

- Corrections don't change low energy spectrum drastically
- Extension: add supersymmetry
 - Corrections vanish (?)
 - $\psi \in \Omega^{(0,p)}(M_n), H_0 = \frac{1}{2}\Delta_{(0,p)}$