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Geodesic approximation to soliton dynamics

Typical setup: classical field theory, field(s) ϕ classified
homotopically by integer n

Static energy functional E(ϕ)≥ const n, equality iff field ϕ

satisfies first order “Bogomol’nyi” equations

Moduli space of solns of Bogomol’nyi eqn Mn = smooth manifold,
dimension ∼ n

Low energy dynamics approximated by geodesic motion in Mn

Metric induced by kinetic energy of field theory

Examples: Yangs-Mills-Higgs (monopoles), abelian Higgs
(vortices), O(3) sigma model (CP1 lumps)
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Quantization

There’s an obvious quantization of geodesic motion on a
Riemannian manifold

Wavefunction ψ : Mn→ C
Hamiltonian H0 = 1

2 ∆

Completely ignores dynamics of normal modes (orthogonal to
Mn). Shouldn’t dependence of normal mode frequencies (i.e.
Casimir energy) be taken into account?

Moss and Shiiki (2000) computed Born-Oppenheimer approx for
quantum mechanics on soliton moduli space

HBO =
1
2

∆ +
1
4

κ +C + · · ·

κ = scalar curvature of Mn, C = Casimir energy

Do these corrections change the quantum dynamics
qualitatively? E.g. H0 may have only cts spectrum, HBO only
discrete. Or HBO may have extra bound states. Or the
degeneracies of energy levels may change.



Quantization

There’s an obvious quantization of geodesic motion on a
Riemannian manifold

Wavefunction ψ : Mn→ C
Hamiltonian H0 = 1

2 ∆

Completely ignores dynamics of normal modes (orthogonal to
Mn). Shouldn’t dependence of normal mode frequencies (i.e.
Casimir energy) be taken into account?

Moss and Shiiki (2000) computed Born-Oppenheimer approx for
quantum mechanics on soliton moduli space

HBO =
1
2

∆ +
1
4

κ +C + · · ·

κ = scalar curvature of Mn, C = Casimir energy

Do these corrections change the quantum dynamics
qualitatively? E.g. H0 may have only cts spectrum, HBO only
discrete. Or HBO may have extra bound states. Or the
degeneracies of energy levels may change.



Quantization

There’s an obvious quantization of geodesic motion on a
Riemannian manifold

Wavefunction ψ : Mn→ C
Hamiltonian H0 = 1

2 ∆

Completely ignores dynamics of normal modes (orthogonal to
Mn). Shouldn’t dependence of normal mode frequencies (i.e.
Casimir energy) be taken into account?

Moss and Shiiki (2000) computed Born-Oppenheimer approx for
quantum mechanics on soliton moduli space

HBO =
1
2

∆ +
1
4

κ +C + · · ·

κ = scalar curvature of Mn, C = Casimir energy

Do these corrections change the quantum dynamics
qualitatively? E.g. H0 may have only cts spectrum, HBO only
discrete. Or HBO may have extra bound states. Or the
degeneracies of energy levels may change.



Quantization

There’s an obvious quantization of geodesic motion on a
Riemannian manifold

Wavefunction ψ : Mn→ C
Hamiltonian H0 = 1

2 ∆

Completely ignores dynamics of normal modes (orthogonal to
Mn). Shouldn’t dependence of normal mode frequencies (i.e.
Casimir energy) be taken into account?

Moss and Shiiki (2000) computed Born-Oppenheimer approx for
quantum mechanics on soliton moduli space

HBO =
1
2

∆ +
1
4

κ +C + · · ·

κ = scalar curvature of Mn, C = Casimir energy

Do these corrections change the quantum dynamics
qualitatively? E.g. H0 may have only cts spectrum, HBO only
discrete. Or HBO may have extra bound states. Or the
degeneracies of energy levels may change.



Quantization

Test using O(3) sigma model on S2

Mn known explicitly (Ratn)
metric on M1 known explicitly
cohomogeneity 1: simple, but not too simple
kähler, but not hyperkähler (κ 6= 0)
can compute C (numerically) using ideas from diff geom
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CP1 lumps on S2

ϕ : R×S2→ S2, L =
1
2

∂µϕ ·∂µ
ϕ

Lichnerowicz bound for E = 1
2

∫
S2 |dϕ|2

0 ≤ 1
2

∫
S2
|ϕ×ϕx −ϕy |2

= E(ϕ)−
∫

S2
ϕ · (ϕx ×ϕy ) = E−4πn

E ≥ 4πn

E = 4πn ⇔ ϕ×ϕx = ϕy

⇔ Jdϕ
∂

∂x
= dϕJ

∂

∂x

i.e. iff ϕ holomorphic
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CP1 lumps on S2

So Mn = Ratn ⊂ CP2n+1

W (z) =
a0 + a1z + · · ·+ anzn

b0 + b1z + · · ·+ bnzn ↔ [a0, . . . ,an,b0, . . . ,bn]

Rat1 ∼= PSL(2,C)

a1z + a0

b1z + b0
↔±

(
a1 a0

b1 b0

)
PSL(2,C)∼= PU(2)×R3 ∼= SO(3)×R3(

a1 a0

b1 b0

)
= UH = U(

√
1 + λ2I2 +~λ ·~τ)
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CP1 lumps on S2

Physically (±U,~λ)↔ lump at −~λ/λ ∈ S2, of “sharpness” λ

Left SO(3) action (isorotation):

(±U,~λ)
±L7→ (±LU,~λ)

Right SO(3) action (spatial rotation):

(±U,~λ)
±R7→ (±UR,R~λ)

Natural metric on Rat1 assigns squared length∫
S2

ϕt ·ϕt

to the tangent vector to any curve ϕ(t) in Rat1
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CP1 lumps on S2

It’s kähler, and invariant under both SO(3) actions:

γ = A1 d~λ ·d~λ+A2(~λ ·d~λ)2 +A3~σ ·~σ+A4(~λ ·~σ)2 +A1
~λ ·(~σ×d~λ)

where Ai(λ) all determined by a single function A(λ)

Explicit formula for A(λ)

Incomplete with finite volume and diameter

Ricci positive with unbounded scalar curvature κ(λ)
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The laplacian on Rat1

Explicit differential operator on SO(3)×R3

∆f = −B1

{
~θ ·~θf +~λ · (~∂×~θ)f −B2(~λ ·~θ)2f

}
−B3

∂

∂λ

(
B4

∂f
∂λ

)
−B5(~λ×~∂) · (~λ×~∂)f

where ∂a = ∂

∂λa
, θa = usual left-invariant vector fields on SO(3),

Bi(λ) explicitly known

Checks:
McGlade computed ∆ on invariant functions f (λ)
For different choice of A(λ), should coincide with ∆CP3

∆ should commute with Killing vector fields generating left and
right SO(3) actions

Left: ξa, [ξa,θb] = [ξa,∂b] = 0, ξa(λ) = 0

Right: Xa = θa + εabcλb∂c
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The laplacian on Rat1

Define angular momentum operators

~J =−i~θ, ~K =−i~ξ, ~L =−i~λ×~∂, ~T =~J +~L =−i~X

Recall ∆ commutes with ~K and ~T .

~J ·~J = ~K ·~K , so ∆ commutes with~J ·~J
Laplacian in physics language

∆f =−B1
∂

∂λ

(
B2

∂f
∂λ

)
+B3~L ·~Lf +B4{~J ·~J +~T ·~T +B5(~λ ·~T )2}f

Wavefunction ψ : [0,∞)×S2×SO(3)→ C
Expand S2 dependence in spherical harmonics Yll3

~L ·~LYll3 = l(l + 1)Yll3 , L3Yll3 = l3Yll3
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The laplacian on Rat1

Peter-Weyl Theorem: matrix elements of unitary irreps of SO(3)
form an orthornormal basis for L2(SO(3))

irreps labelled by j ∈ N
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The laplacian on Rat1

[~K ·~K ,∆] = [K3,∆] = 0 so ∆ preserves j and k3

∆ independent of k3: can set k3 = 0 and multiply degeneracies
by 2j + 1
[~T ·~T ,∆] = [T3,∆] = 0, so ∆ also preserves eigenspaces of
~T ·~T , labelled by t ∈ N, and T3 labelled by −t ≤ t3 ≤ t
Does not preserve l, l3 or j3. Standard angular momentum
algebra: there exists a basis |t, j, l, t3〉 for the space

Vjt =
j⊕

j3=−j

|j+t|⊕
l=|j−t|

l⊕
l3=−l

π
(j)
j30Yll3

such that

~T ·~T |t, j, l, t3〉 = t(t + 1)|t, j, l, t3〉
~J ·~J|t, j, l, t3〉 = j(j + 1)|t, j, l, t3〉
~L ·~L|t, j, l, t3〉 = l(l + 1)|t, j, l, t3〉

T3|t, j, l, t3〉 = t3|t, j, l, t3〉
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The laplacian on Rat1

[∆,T3] = 0 so ∆ preserves T3 eigenspace Vjtt3 , −t ≤ t3 ≤ t .

Spectral problem for H0 = 1
2 ∆ reduces to infinite sequence of

vector Sturm-Liouville problems for maps ψ : [0,∞)→ Vjt0, vector
space of dimension 2min{j, t}+ 1, spanned by

|t, j, l,0〉 |j− t| ≤ l ≤ j + t

Boundary conditions at λ = 0, λ = ∞: standard SL classification
applies. Worst case: LCN

Spectrum of H0 = 1
2 ∆ computed numerically



Spectrum of H0 = 1
2∆

energy degeneracy {j, t}P

0.00 1 {0,0}+
1.06 6 {0,1}−
1.46 9 {1,1}−
2.30 1 {0,0}+
2.72 9 {1,1}−
2.76 10 {0,2}+
3.05 9 {1,1}+
3.18 30 {1,2}+
3.91 25 {2,2}−
4.30 6 {0,1}−
4.93 9 {1,1}−
5.01 30 {1,2}+
5.11 14 {0,3}−
5.33 30 {1,2}−



Born-Oppenheimer corrections

HBO = H0 +
1
4

κ(λ) +C (λ) + · · ·

Don’t break SO(3)×SO(3) symmetry: reduction to finite dim SL
problems unchanged

Scalar curvature κ(λ) known explicitly

κ∼ λ4/(logλ)3

Changes BCs at ∞ (but not radically)

Casimir energy C (λ) much murkier
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Casimir energy

C =
1
2 ∑

i
ωi

ωi(λ) = normal mode frequencies

E = 1
2

∫
M |dϕ|2 Dirichlet energy of map ϕ : M→ N (M = N = S2)

ϕ holomorphic⇒ global min of E
Second variation: ϕs : M→ N

d2E(ϕs)

ds2

∣∣∣∣
s=0

= 〈X ,JϕX〉L2 , X = ∂sϕs|s=0 ∈ Γ(ϕ
−1TN)

Jϕ = Jacobi operator, eigenvalues ω2
i

JϕX = ∆ϕX −RϕX , RϕX = trace(RN(dϕ · ,X)dϕ ·)

SO(2) symmetry: reduces to infinite sequence of scalar SL
problems on interval θ ∈ [0,π]. Numerics→ ω2

i (λ).
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Casimir energy

Explicit computation of spectrum possible in two cases:

λ = 0: ϕ = Id : S2→ S2, ϕ−1TN ∼= T ∗M

Jϕ = ∆one-forms−2

ω
2
` = `(`+ 1)−2, multiplicity = 4`+ 2, ` ∈ Z+

λ = ∞: ϕ = ϕ0 = const ,

Jϕ = ∆functions⊗ IdTϕ0 S2

ω
2
` = `(`+ 1), multiplicity = 4`+ 2, ` ∈ Z+ (almost)

ζ-function regularization→ finite renormalized Casimir energies
C 0
∗ , C ∞

∗ for these two spectra



Casimir energy

Explicit computation of spectrum possible in two cases:
λ = 0: ϕ = Id : S2→ S2, ϕ−1TN ∼= T ∗M

Jϕ = ∆one-forms−2

ω
2
` = `(`+ 1)−2, multiplicity = 4`+ 2, ` ∈ Z+

λ = ∞: ϕ = ϕ0 = const ,

Jϕ = ∆functions⊗ IdTϕ0 S2

ω
2
` = `(`+ 1), multiplicity = 4`+ 2, ` ∈ Z+ (almost)

ζ-function regularization→ finite renormalized Casimir energies
C 0
∗ , C ∞

∗ for these two spectra



Casimir energy

Explicit computation of spectrum possible in two cases:
λ = 0: ϕ = Id : S2→ S2, ϕ−1TN ∼= T ∗M

Jϕ = ∆one-forms−2

ω
2
` = `(`+ 1)−2, multiplicity = 4`+ 2, ` ∈ Z+

λ = ∞: ϕ = ϕ0 = const ,

Jϕ = ∆functions⊗ IdTϕ0 S2

ω
2
` = `(`+ 1), multiplicity = 4`+ 2, ` ∈ Z+ (almost)

ζ-function regularization→ finite renormalized Casimir energies
C 0
∗ , C ∞

∗ for these two spectra



Casimir energy

Explicit computation of spectrum possible in two cases:
λ = 0: ϕ = Id : S2→ S2, ϕ−1TN ∼= T ∗M

Jϕ = ∆one-forms−2

ω
2
` = `(`+ 1)−2, multiplicity = 4`+ 2, ` ∈ Z+

λ = ∞: ϕ = ϕ0 = const ,

Jϕ = ∆functions⊗ IdTϕ0 S2

ω
2
` = `(`+ 1), multiplicity = 4`+ 2, ` ∈ Z+ (almost)

ζ-function regularization→ finite renormalized Casimir energies
C 0
∗ , C ∞

∗ for these two spectra



Casimir energy

Cut off divergent infinite sum

Ck (λ) =
1
2

k

∑
i=1

(ωi(λ)−ωi(∞)), k = 10,24,42, . . . ,4`+ 2, . . .

include whole eigenspaces at λ = 0

Approximate scale similarity

Approximation: C (λ) = (C 0
∗ −C ∞

∗ )C10(λ)

C (λ) just a bounded potential: doesn’t change BCs
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Comparison of spectra

energy degeneracy {j, t}P energy degeneracy {j, t}P energy degeneracy {j, t}P

0.00 1 {0,0}+ 1.79 1 {0,0}+ 0.58 1 {0,0}+
1.06 6 {0,1}− 3.00 6 {0,1}− 1.89 6 {0,1}−
1.46 9 {1,1}− 3.18 9 {1,1}− 1.93 9 {1,1}−
2.30 1 {0,0}+ 4.26 1 {0,0}+ 2.93 1 {0,0}+
2.72 9 {1,1}− 4.65 9 {1,1}− 3.49 9 {1,1}−
2.76 10 {0,2}+ 4.68∗ 9 {1,1}+ 3.51∗ 9 {1,1}+
3.05 9 {1,1}+ 4.84∗ 10 {0,2}+ 3.76∗ 10 {0,2}+
3.18 30 {1,2}+ 5.07 30 {1,2}+ 3.95 30 {1,2}+
3.91 25 {2,2}− 5.56 25 {2,2}− 4.25 25 {2,2}−
4.30 6 {0,1}− 6.36 6 {0,1}− 5.07 6 {0,1}−
4.93 9 {1,1}− 6.64 9 {1,1}− 5.39 9 {1,1}−
5.01 30 {1,2}+ 6.96 30 {1,2}+ 5.81 30 {1,2}+
5.11 14 {0,3}− 7.01∗ 30 {1,2}− 5.91∗ 30 {1,2}−
5.33 30 {1,2}− 7.30∗ 14 {0,3}− 6.22∗ 14 {0,3}−
5.42 25 {2,2}− 7.44 25 {2,2}− 6.24 25 {2,2}−
5.52 42 {1,3}− 7.57 42 {1,3}− 6.44∗ 25 {2,2}+
6.06 25 {2,2}+ 7.66 25 {2,2}+ 6.48∗ 42 {1,3}−
6.30 70 {2,3}+ 8.10 70 {2,3}+ 6.96 70 {2,3}+
6.46 1 {0,0}+ 8.55 1 {0,0}+ 7.22 1 {0,0}+

Low energy spectra rather similar



Comparison of spectra



Concluding remarks

O(3) sigma model on S2 is useful “laboratory” for studying
semiclassical quantization of solitons

Geometry of M1 is simple - but not too simple

BO corrections can be computed (almost) explicitly

SO(3)×SO(3) symmetry reduces everything to Sturm-Liouville

Corrections don’t change low energy spectrum drastically
Extension: add supersymmetry

Corrections vanish (?)
ψ ∈ Ω(0,p)(Mn), H0 = 1
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