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TCGL theory

Ψ : M → C2, M = Riemannian mfd (e.g. R3)
A ∈ Ω1(M), em gauge potential
B = dA ∈ Ω2(M), magnetic field
dAΨ = dΨ− iAΨ

GL energy

E =
1
2
‖dAΨ‖2 +

1
2
‖B‖2 +

Z
M

U(Ψ)

where ‖C‖2 = 〈C,C〉, 〈B,C〉=
R

M B∧∗C

Field equations

δAdAΨ+
∂U
∂Ψ† = 0

−δB = J

J = −Im(Ψ†dAΨ) = supercurrent



Babaev-Faddeev-Niemi decomposition

Gauge invariant fields

ρ = |Ψ| : M → R+

ϕ = [Ψ1,Ψ2] : M → CP1 ≡ S2

C = J/ρ
2 ∈ Ω1(M)

GL energy is

E =
1
8
‖ρdϕ‖2 +

1
2
‖dC+

1
2

ϕ
∗
ω‖2 +

1
2
‖dρ‖2 +

1
2
‖ρC‖2 +

Z
M

U(ρ,ϕ)

ω = kähler form on S2.

Truncation 1: assume U enforces ρ ≈ constant = 1 WLOG

E ≈ 1
8
‖dϕ‖2 +

1
8
‖ϕ

∗
ω‖2 +

1
2
〈ϕ∗ω,dC〉+ 1

2
‖dC‖2 +

1
2
‖C‖2



Babaev-Faddeev-Niemi decomposition

Truncation 2: C is massive, so assume C ≈ 0

E ≈ 1
8
‖dϕ‖2 +

1
8
‖ϕ

∗
ω‖2

=
1
8

Z
R3

∑
i

∣∣∣∣dϕ
∂

∂xi

∣∣∣∣2

+∑
i<j

(
(ϕ×dϕ

∂

∂xi
) ·dϕ

∂

∂xj

)2

=
1
8

Z
R3

∑
i

∣∣∣∣ ∂ϕ

∂xi

∣∣∣∣2

+∑
i<j

(
ϕ · ( ∂ϕ

∂xi
× ∂ϕ

∂xj
)

)2

=
1
4

EFS(ϕ)

EFS certainly has knot solitons. BFN conjecture TCGL does too
(Phys.Rev.B65:100512,2002).



Why should we care?

Very influential: >100 citations

If true, gives Faddeev field ϕ : R3 → S2 concrete physical
interpretation

Qualitatively similar arguments have been made (for nonabelian
gauge theories) by Niemi and others to address questions of
fundamental importance: e.g. quark confinement, quantum
gravity



Knot solitons in the Faddeev-Skyrme model

EFS(ϕ) =
1
2
‖dϕ‖2 +

1
2
‖ϕ

∗
ω‖2

ϕ : R3 → S2, b.c. ϕ(∞) = (0,0,1)

Hopf degree Q = 1
16π2

R
R3 A∧dA where ϕ∗ω = dA

ϕ−1(reg. value) = oriented link in R3.
Q = linking number of different regular preimages.

Numerics: for some Q, ϕ−1(0,0,−1) is knotted.

Vakulenko-Kapitanskii bound: EFS(ϕ)≥ c|Q| 3
4 . The power is

sharp.



Knot solitons in the Faddeev-Skyrme model

Studied numerically by Battye and Sutcliffe, Hietarinta and Salo, and
many others

[Sutcliffe, Proc. Roy. Soc. Lond. A463 (2007) 3001]



Testing the BFN conjecture

EFS has knot solitons, but do they survive unfreezing of C = 0
and ρ = 1?

Test in most favourable case, hard confining potential, e.g.

U = λ(1−|Ψ|2)2, λ → ∞

so truncation 1 holds exactly,

E =
1
4

EFS(ϕ)+
1
2
‖dC‖2 +

1
2
‖C‖2 +

1
2
〈ϕ∗ω,dC〉

Supercurrent coupled Faddeev-Skyrme (SCFS) model

Truncation 2 amounts to neglecting ϕ-C coupling



Testing the BFN conjecture

Definitive test: introduce parameter 0 ≤ α ≤ 1

Eα =
1
4

EFS(ϕ)+EKG(C)+
α

2
〈ϕ∗ω,dC〉

Know this has knot solitons when α = 0. Do any of them
continue to α = 1?

On M = R3 need numerics (even EFS not analytically tractable)

On M = S3
R can answer question exactly (Q = 1, 0 < R < 2).



Homogenization of solitons on shrinking domains

Generic phenomenon: topological solitons on compact domains
undergo a phase transition as the domain shrinks – they gain
symmetry

Happens for Skyrme model, vector meson Skyrme model,
Faddeev-Skyrme model on S3, and abelian Higgs model on any
compact Riemann surface

Theorem (Ward, JMS-Svensson, Isobe) The Hopf map

π : C2 ⊃ S3 → S2 ≡ CP1, (z1,z2) 7→ [z1,z2]

is a stable critical point of EFS(ϕ) if and only if 0 < R < 2.



First variation of Eα

Eα(ϕ,C) =
1
8
‖dϕ‖2 +

1
8
‖ϕ

∗
ω‖2 +

1
2
‖dC‖2 +

1
2
‖C‖2 +

α

2
〈dC,ϕ∗ω〉

Makes sense for ϕ : M → N, C ∈ Ω1(M),
M Riemannian, N Kähler.

Demand
dEα(ϕs,Cs)

ds

∣∣∣∣
s=0

= 0

for all smooth variations (ϕs,Cs)

δ(dC +
α

2
ϕ
∗
ω)+C = 0,

τ(ϕ)− 2
α

Jdϕ][C +(1−α
2)δdC] = 0.



First variation of Eα

δ(dC +
α

2
ϕ
∗
ω)+C = 0,

τ(ϕ)− 2
α

Jdϕ][C +(1−α
2)δdC] = 0.

Fact: For fixed ϕ : M → N, there can be at most one C s.t. (ϕ,C)
is critical.

Assume (ϕ,C′) also a solution. Then C′′ = C−C′ solves
δdC′′+C′′ = 0
Hence 0 = 〈C′′,δdC′′+C′′〉= ‖dC′′‖2 +‖C′′‖2

Hopf map has a unique continuation for all α ∈ [0,1]

(ϕ,C) =

(
π,

2α

4+R2 σ3

)
where π : G → G/K , G = SU(2), K = {diag(λ,λ) : λ ∈ U(1)}
and π : x → xK .
Great. But is it stable at α = 1?
Need second variation formula. . .



Second variation of Eα

Given smooth variation (ϕs,Cs) of critical point (ϕ,C), define
variation section (X ,Y ) ∈ ΓE = Γ(ϕ−1TN⊕T ∗M)

X =
∂ϕs

∂s

∣∣∣∣
s=0

, Y =
∂Cs

∂s

∣∣∣∣
s=0

Then
d2Eα(ϕs,Cs)

ds2

∣∣∣∣
s=0

= 〈(X ,Y ),Hα(X ,Y )〉

where Hα is a self-adjoint, 2nd order linear diff-op Γ(E )→ Γ(E )

Spectrum of Hα determines stability of (ϕ,C): unstable if Hα

has negative eigenvalue(s).



Second variation of Eα

For our energy Eα

Hα

(
X
Y

)
=

(1
4J + 1

4L +αC 1
2 αA

1
2 αB δd+1

)(
X
Y

)
where

A : Ω1(M)→ Γ(ϕ−1TN) A : Y 7→ −Jdϕ]δdY

B : Γ(ϕ−1TN)→ Ω1(M) B : X 7→ δd(ϕ∗ιX ω)

C : Γ(ϕ−1TN)→ Γ(ϕ−1TN) C : X 7→ −1
2

J∇
ϕ

]δdCX .

For (ϕ,C) = continued Hopf map, can compute spectrum of Hα

exactly. H1 has a negative eigenvalue of index 10, for all
0 < R < 2. So supercurrent coupling destabilizes the unit
hopfion, at least on S3.

Back to M = R3...



Energy bounds

Recall VK bound EFS(ϕ)≥ c0|Q|
3
4

Have similar bound for Eα

Eα =
1
8
‖dϕ‖2 +

1
8
(1−α)‖ϕ

∗
ω‖2 +

1
2
(1−α)‖dC‖2 +

α

2
‖dC +

1
2

ϕ
∗
ω‖2 +

1
2
‖C‖2

≥ 1
8
‖dϕ‖2 +

1
8
(1−α)‖ϕ

∗
ω‖2

=
1
8

√
1−α

(
‖dϕ̂‖2 +‖ϕ̂

∗
ω‖2)

≥ 1
4

√
1−αc0|Q

3
4 | (1)

where ϕ̂ = ϕ◦D√
1−α

and Dλ : R3 → R3, Dλ(x) = λx

Expect Eα to have smooth minimizer in every homotopy class for
0 < α < 1.

Bound trivial at α = 1. Is this sharp?



Energy bounds

Yes:
inf{E1(ϕ,C) : Q(ϕ) = n}= 0 for all n ∈ Z

Proof: ∃ ϕ with ϕ = (0,0,1) outside B.
∃ C s.t. ϕ∗ω =−2dC (H2(M) = 0).
Can assume C = 0 outside B (H1(M\B) = 0).

E1(ϕ◦Dλ,D
∗
λ

C) =
1

2λ
‖dϕ‖2 +0+

1
2λ
‖C‖2



Numerics (joint work with Juha Jäykkä)

Write down lattice approximant for Eα(ϕ,C)

Fix Q. We’ve done Q = 1,2. Q = 3 still working.

Starting at α = 0, minimize Eα using gradient-based minimization
scheme (e.g. conjugate gradient method).

At α = 0, get usual charge Q knot soliton, with C = 0.

Increment α slightly. Use old minimizer as new initial guess.
Minimize Eα

Get curve of minimizers, parametrized by α ∈ [0,1]

Knot solitons shrink and disappear as α → 1



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 0



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 0.1



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 0.2



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 0.3



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 0.4



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 0.5



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 0.6



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 0.7



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 0.8



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 0.9



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 0.91



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 0.92



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 0.93



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 0.94



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 0.95



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 0.96



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 0.97



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 0.98



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 0.99



Numerics (joint work with Juha Jäykkä)

Q = 1, α = 1



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 0



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 0.1



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 0.2



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 0.3



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 0.4



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 0.5



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 0.6



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 0.7



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 0.8



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 0.9



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 0.91



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 0.92



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 0.93



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 0.94



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 0.95



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 0.96



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 0.97



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 0.98



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 0.99



Numerics (joint work with Juha Jäykkä)

Q = 2, α = 1



Numerics (joint work with Juha Jäykkä)

Energy versus α

Q = 1, Q = 2



Numerics (joint work with Juha Jäykkä)

Core length versus α

Q = 1, Q = 2



Numerics (joint work with Juha Jäykkä)

L2 norm of dC + 1
2 ϕ∗ω

Q = 1, Q = 2



Concluding remarks

We have tested not only the BFN conjecture, but the reasoning
underlying it: directly tested the assumption that “turning on the
couplings” doesn’t destroy the knot solitons

Even if we keep ρ frozen (so topology is preserved) we find that
coupling to supercurrent alone destabilizes knot solitons

Numerics on R3 supplemented by exact analysis on S3
R

Conclude BFN conjecture extremely unlikely to be true


