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What are topological solitons?

Smooth, spatially localized solutions of nonlinear relativistic
classical field theories

Topologically stable. Classified by “charge” n € Z (Chern
class, degree, winding number. . .)

o Particle-like:
e ) E(0)
e relativistic kinematics: E(v) = ——
(v) T2
e antisolitons
o Examples:

e d =1 kinks

e d = 2 vortices, lumps

e d = 3 monopoles, skyrmions, hopfions
e d = 4 instantons
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Bogomol'nyi structure

e Typically (not always) field theory has “Bogomol'nyi limit"
(Related to SUSY)

@ Bogomol'nyi bound: E > constn,
Equality iff ¢ satisfies system of nonlinear first order PDEs
(Bogomol'nyi equations)

@ Moduli space of charge n solutions of Bogomol'nyi equation
M, a smooth manifold, dim M,, = ndim My
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FIELD  ConFituwsmion

- SoLoed StAce (oo DiMenstami)
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o Natural Riemannian structure on M. Actually, usually kahler
(vortices, lumps) or even hyperkdhler (monopoles, instantons)
e Comprehensive framework for low energy n-soliton dynamics:

o Classical: geodesic flow in M,
e Quantum: Schrodinger eqn on M,
e Statistical mechanics (n — o)

o We'll look in detail at case of vortices.
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e Scalar field ¢ : RZD — C, gauge field A € QY(R(ZD)

A
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Abelian Higgs model

e Scalar field ¢ : RZD — C, gauge field A € QY(R(ZD)

A

1
£=3 8

2 I
D¢ =d¢ — iAp, F =dA
e Gauge invariant: ¢ — eX¢, A— A+ dy

1
$DHG — ZFWFW — 21— |9)?)?

o Field equations:

A
DD!6+ 5(1=é[)e = 0

—OF =
Jy = 5(3Ds6 — 6D,9)



Abelian Higgs model

@ Temporal gauge: Ag =0
@ Energy: E=T+V

1
T = 2/2 000|? + (00A1)? + (DoAz)?
R

1 A
vV = 2/ 1Dig|? + Fp + 2(1 — |¢]?)?
RZ



Abelian Higgs model

@ Temporal gauge: Ag =0
@ Energy: E=T+V

1
T o= 5 1060 + @) + (20a)?
R

1 A
Vo= 5 [ IDioR - 6Py
R2

e Evolution equations for ¢(t), A(t)
A
%o = DPo—S(1—[8f*)0
RBA = V?A+V(V-A)—J
V-(A) = 5(@00 — 609)
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e Finite energy:
o [¢p| = 1as|x] — o0
o Winding number n = degree of ¢, : S1, — S?

P00, ) = X

e Magnetic flux quantization






n=1 n=2 n=3

@ n> 1 unstableif A >1

@ Cross section through cosmic string, or magnetic flux tube in
superconductor



Bogomol'nyi bound (A = 1)

@ For a static field with winding n,
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Bogomol'nyi bound (A = 1)

@ For a static field with winding n,

0

IN

1 ) 1
5 [, 1D16-+ D20 + (B = 51~ o))

2

= E—mn

_ E_ 1/ B + i(91(6D20) — 82(6D16))
R2

@ So E > mn, with equality iff

(BOGI) Dip+ iDyp =0
(B0G2) B = (1-|o)
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Taubes's existence theorem

o Define h = log|$|? (gauge invariant), so ¢ = e2/T/x

e (BOG1) =

1 . . o 1 :
81(§h +ix) — AL+ /82(§h +ix)+A2=0

@ Solve for A. 1
B = 01A; — A1 = _EAh

e (BOG2) =
Ah+1-e'=0
Valid away from zeroes of ¢

@ If ¢ has winding n, it has n zeroes (counted with multiplicity)
X1, X, ..., X, say.

Ah+1-e"=4and"6(x—X) (%)
r=1
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Taubes's existence theorem

@ Taubes’s theorem: given any unordered collection of n points
{X,} in R?, not necessarily distinct, (%) has a unique solution
with h — 0 as r — 0.

@ Interpretation: given any collection of points Xi, ..., X, there
is a unique (up to gauge) n-vortex solution of the
Bogomol'nyi equations with ¢ = 0 precisely at Xi,..., X,.
Roughly, X, = vortex positions.
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Moduli space

Use complex coord z = x3 + ix> on space. Vortex positions
Zy, ..., 2y

@ Taubes: for each monic degree n polynomial

n

o2) = [[c—2) = 2"+ a4,
r=1

there exists a unique n-vortex with zeros at roots of p.

Moduli space of n-vortices: M, = C"

Global coords p1,...,pn
Local coords Z3,...,2Z, on M,\A
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Geodesic approximation

@ Think of field equations as ODEs for motion of a point
(¢(t),A(t)) in field configuration space

= D% (- [6P)s
VA+V(V-A) -
)

> D o
I

V-

o Configuration space:
A = {finite energy maps (¢,A) : R2 — C x R? = R*}
cC = A/G

identify gauge equivalent fields
@ A has a natural Riemannian metric, assigns to tangent vectors
a,b € Ty a)A = A inner product

I'(a,b):/R2a~b
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Geodesic approximation

@ Descends to true configuration space C: project a orthogonal
to gauge orbit through (¢, A)

@ Infinitesimal gauge transform: A = (ix¢, —Vx)
(0A).0) = | Re(Bixe) AV

= /sz{;(éé—M)JrV-A}

Gauss's law < trajectory orthogonal to gauge orbits



Geodesic approximation

FIELD  ConFiLuwdmion
StACE (oo DienStamh)

N SeLyron
Mol SPACE
(Fen 1€ DMENSaRL)

@ Restrict dynamics to M, C C

s - /(T—V)dt:/(T—wn)dt



Geodesic approximation

FIELD  ConFiLuwdmion
StACE (oo DienStamh)

N SeLyron
Mol SPACE
(Fen 1€ DMENSaRL)

@ Restrict dynamics to M, C C
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Geodesic approximation

FIELD  ConFiLuwdmion

- SeLymo
MAW\A: 5\"1’:? Stace (N Diuenstonth )

(Fen 1€ DMENSaRL)

@ Restrict dynamics to M, C C

s - /(T—V)dt:/(T—wn)dt

T o= 5 L1+ @A)+ (@0Aa)? = 5T((G.A). (6, A)

@ Geodesic motion w.r.t. metric induced on M, by . Denote
this metric v, the L2 metric
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o Consider time varying field (¢(t), A(t)) which at each fixed
time satisfies the Bogomol'nyi equations, with distinct vortex
positions Z,(t) varying with time, and whose tangent vector
(¢, A) satisfies Gauss's law

o Remarkable fact (Samols, after Strachan): kinetic energy
integral “localizes” around zeros Z,(t) of ¢

= lim —IZ/
e—0 5 Zr

where 7 is defined by ¢ = ¢

o Taubes's equation for h = log |¢|? implies

"L . Oh
U—lerazr
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@ Expand h in a neighbourhood of Z,
1 1 —
h:2Iog|z—Z,|+a,+5b,(z—Z,)+§br(2_Zr)+...

Defines coefficients b,(Z1,...,2Z,), r=1,2,...,n
@ Subst in “localized” formula for T:

T o— Obe\ - =
T = 5 Z (5rs + 282,> Z,Z

r,s=1

. . dbs _ by
e T is manifestly real, so 92 = oz, (KC)

@ Extract metric: Y= Z (5,5 + 22?) dz,dZ,

r,s=1
@ Hermitian (since T real). Kahler form

iIT — Obs —
w= Z <5,5 + 232,) dz, ANdZ,

r,s=1

Closed by (KC). M, is a Kahler manifold.
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Reduced moduli space

@ Translation invariance
>b5 0

n D) n
bs
r=1 aZr ) (rzzjl

KC:>(Z Erza b, =0
) YA

=1

0
0z,

]

= b, = constant = 0

r=1

e COM Z = (Z + -+ Z,)/n, relative coords W, = Z, — Z
n—1
y=nmdZdZ + ) FdW,dW,
r,s=1
Product metric on M, = C x C" ! = Mopm x MO,
o COM drifts, relative motion decouples
° M,? complex submfd of M,,, hence also Kahler
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Vortex scattering

WLOG Z(t) = 0, geodesic flow on M = C

Points in MY « centred 2-vortices «» monic polynomials
p(z) = 2%+ p2

Rotation invariance, hermiticity imply

v = f(|p2])dp2dp2

p2 — P2 is an isometry of 4. Hence, its fixed point set R C C
is a geodesic

It follows that all straight lines through the origin are
(unparametrized) geodesics

Vortex positions = roots of z% + po

As po traverses real axis left to right, roots approach one
another along x; axis, coalesce and scatter at 90°
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Vortex scattering

@ Generic for planar solitons (lumps, baby skyrmions)

@ Parametrize centred two-vortex by Z;, say. Then 2, = —7;.
Metric asymptotically flat.

e Z; — —Z1 same two-vortex! Solitons are classically
indistinguishable. M9 = C/S, = cone

@ As vortices get close, lose identity, metric 7 smooths out tip
of cone

e Can construct f(|p2|) numerically: rounded cone



Vortex scattering

Fig.2. A sketch of the smoothed cone representing M as an embedding in E®, and the singular
cone Cb to which it is asymptotic. The difference in the areas of the cones is 7. Also shown is a
geodesic describing vortices in head-on collision

Samols, CMP 145 (1992) 149



General scattering

] [ [ 7 =t
T :
; —

Samols, CMP 145 (1992) 149



Comparison with “experiment”

.{ 8
88 — —
62 — —
42 o
20 - -
@ 1 o |
L e e LA s s B Sy B
a.e e.5 1.8 1.5 2.0 2.5 3.8
a

Fig. 8. The deflection angle as a function of impact parameter. The solid line is the geodesic pre-
diction. The data points are from the numerical simulation of the full scattering problem at various
impact speeds v: v = 0.16 (&), v = 0.4 (V), v = 0.85 (¢) (from [171); v = 0.5 (O) (from [18]). For
estimates of the errors in some of these data points sce [17]

Samols, CMP 145 (1992) 149
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1
L=_

DG — LR P (1 o)’
2 M 4 1 8

o Critical coupling A =2 =1



Long range intervortex forces

1o = 1 % 212
= B — = (1 —
L=5DuoDro - FuF g (1—1o%)

o Critical coupling A =2 =1
@ Vortex asymptotics: in real gauge,

1. 9 __m
=1+ 27TKO(’M)’ A= 27Tk x VKo(r)

g, m unknown constants, Ky = Bessel function



Long range intervortex forces

1o = 1 % 212
= B — = (1 —
L=5DuoDro - FuF g (1—1o%)

o Critical coupling A =2 =1
@ Vortex asymptotics: in real gauge,

1. 9 __m
=1+ 27TKO(’M)’ A= 27Tk x VKo(r)

g, m unknown constants, Ky = Bessel function

o Note Ko(r) ~ +/5-e"



Linearized model

@ Coincides with solution of linearized AHM in presence of
sources at vortex centre (¢ = 1+ 1))
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e Klein-Gordon-Proca theory: 1) scalar boson (Higgs) of mass ,
A# vector boson (photon) of mass 1



Linearized model

@ Coincides with solution of linearized AHM in presence of
sources at vortex centre (¢ = 1+ 1))

1 o M2 2 1 v 1 o A
E = 5 H'(l}a ”l)Z) — 7¢J —ZFHVF + EA'LLA + /{7/1—_/#/4

e Klein-Gordon-Proca theory: 1) scalar boson (Higgs) of mass ,
A# vector boson (photon) of mass 1

@ Asymptotic vortex fields induced by

k = qd(x) scalar monopole, charge ¢

= —mk x Vi(x) magnetic dipole of moment mk

Composite point source, “point vortex”



Point vortices

e At u =1, g = m (from BOG eqns)
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Point vortex interactions

@ Interaction Lagrangian

Ling = / {k)¥(2) —jﬁ)Aff)} =Ly+La
R2

@ Two point vortices at rest at y, z

1
Vint = —Ling = %[mzKo(\y —2|) — ¢*Ko(uly — 2|)]

Reproduces typel/Il dichotomy of superconductivity

e Critical coupling (1 =1): g = m = Vi = 0. No static
intervortex forces



Critical coupling

@ Scalar attraction mediated by scalar field v, magnetic
repulsion mediated by vector field A
Different tranformation properties under Lorentz boosts
Do not balance for (point) vortices in relative motion



Critical coupling

@ Scalar attraction mediated by scalar field v, magnetic
repulsion mediated by vector field A
Different tranformation properties under Lorentz boosts
Do not balance for (point) vortices in relative motion

o Can compute Ljy, for point vortices moving along arbitrary
trajectories y(t) and z(t), as an expansion in time derivatives
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Moving point vortex

Point vortex moving along y(t) at constant velocity has

o n(x,t) = (1 515 ) olx - y(2)

@ |-

g=area X X ="Yw)q

o jf=qkxy - V,-kxV+(kxy)y- V)

o 2
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Interaction Lagrangian
: 2
Ling = /Rz{ff(l)%) —JnAY

@ Need fields induced by moving point vortex 2
@ If linear theory were massless, would use retarded potentials

(standard problem). Here need to be sneaky

9> . 212
Lint = —Ely—Z\ Ko(ly — z|)

L= TO9P+122) - T ko(ly — 2l)ly — 22
2 A7 otly y



Interaction Lagrangian

1 a2
Lint = /Rz{/fu)llf(z) —J(Ml)AL )}

@ Need fields induced by moving point vortex 2
@ If linear theory were massless, would use retarded potentials
(standard problem). Here need to be sneaky

q° 2
Lt = —o=Iy = 2*Ko(ly — 2]
2
L= SU9P+2) — - Kolly — 2)ly — 2

@ Geodesic motion on R? x R?\thick(A) wrt to metric

2 2
q q
g=m <1 - ﬁKO(‘Y - Z’)) (dY'd)H—dZ-dZ)‘f'?KO(’y—ZDdY'dZ

Asymptotic to the Samols metric



Vortices on compact spaces

@ Motivation

e You don't really understand a field theory until you understand
it on a general background

e It's mathematically interesting

e Technical device to get nonzero soliton density without n = oo
(soliton gas dynamics)

e Torus = spatially periodic solutions, cf Abrikosov lattice

@ Space = compact Riemann surface ¥, metric g, almost
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Vortices on compact spaces

@ Motivation

e You don't really understand a field theory until you understand
it on a general background

e It's mathematically interesting

e Technical device to get nonzero soliton density without n = oo
(soliton gas dynamics)

e Torus = spatially periodic solutions, cf Abrikosov lattice

@ Space = compact Riemann surface ¥, metric g, almost
complex structure J, kahler form w(-,-) = g(J-, )

° ¢: ¥ — C, Ac Q(X) not good enough ( [z B = 0!)
@ Need more mathematical sophistication
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Vortices on compact spaces

@ L = complex line bundle over ¥, hermitian fibre metric h(-,-)
@ ¢ a section of L

@ Metric compatible connexion

Vi T(TE) x T(L) — (L)
X[h(¢,¥)] = h(Vx¢.¥) + h(d, Vxi))

Given local unitary frame ¢ for L, Vxe = n(X)e where 7 is a
local complex 1-form

Change frame ¢ = fe, f : U — U(1)

n=n+fldf

Metric compatibility = n+7=20

A = in real local 1-form on X
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Vortices on compact spaces

@ Associated exterior derivative dV : QP(L) — QPFL(L)

eg. p=0: (dV¢)(X)=Vx¢

o Curvature of V; FY = dVdV € Q?(End(L)). Locally
FV =dn=dj

Globally well-defined 2 form on ¥. Imaginary
@ Energy of a pair ¢ € (L), V:

1 1 1
E—Z1dVel2 + Z1EVI2 + 2111 — 62112
STl + SIFEI" + g1 =[]

where | - || = L2 norm and |¢|> = h(¢, ¢)
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e Decompose dV = 9V + 9" where
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o ldentity
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Bogomol'nyi argument

e Decompose dV = 9V + 9" where

9% QPI(L) — QPTLI(L), DY - QPI(L) — QPITY(L)

o ldentity
(FY, 9wz

dVdV ¢, uw) 2
4V, 8V (¢w)) 2

dv¢7 — %k dv(b)L2

\vé 5V, . aV =V
Vp+0 6,i(06—0" )
iV —id" 6|

{
{
{
{



Bogomol'nyi argument

e Decompose dV = 9V + 9" where

9% QPI(L) — QPTLI(L), DY - QPI(L) — QPITY(L)

o ldentity
(FV,|pPw)e = (dVdVe, gw),
= (dV4,6Y(¢w)) 2
= (dV¢,—xdVe),2
= (0V9+0 6,0 —0" 0))
N A
@ Hence
1
liFY + 536 = Dwl? = IFYIP + (1079l

v 1
—l27 ol + Zlllel* - 12 —/ FY
pE



Bogomol'nyi argument

@ Hence

v 1. 1 1 .
E = [? ¢\2+||/FV+(¢|2—1)w||2+//FV
2 2 2 /s



Bogomol'nyi argument

@ Hence

v 1 1 1 .
E = 101+ 20T + 2o 1o+ 2 [ e
2 2 2 )
@ First Chern class of L, ¢1(L) = [ﬁFv]

deg(L) = /Z a(l)=neZ



Bogomol'nyi argument

@ Hence

v 1. 1 1 .
E::\6¢F+nmv+(¢ﬁ—nmﬁ+l/mv
2 2 2 /s

@ First Chern class of L, ¢1(L) = [ﬁFv]
deg(L) = [ a(l)=nez
by

@ Hence E > 7n with equality iff

(BOG1) 8 ¢=0
(BOG2)  iFY = %(1 —|4?)
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Bradlow bound

@ n = vortex number (antivortex number if n < 0)

@ There's an upper bound on the number of vortices ¥ can
accommodate

o Integrate (BOG?2) over ¥

Vol(X)

N =

1
2mn = 2/2(1 —|¢[*)w <

Roughly, think of each vortex as occupying volume 47
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Bradlow's approach to the moduli space

a holomorphic line bundle L have a canonical 0 operator

QPa(L) — QPatL(L).

o Choose local holomorphic frame ¢ for L

o Then locally any &€ € QP9(L) takes form £ = we where
weQPIx)

o Define 9¢ = (0w)e

o Independent of choice of holomorphic frame

o Conversely, given operator 0 : QP9(L) — QP9+1(L), this
defines holomorphic structure on L

° On
9
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Bradlow's approach to the moduli space

@ Given holomorphic line bundle L and hermitian inner product
h, there is a unique h-compatible connexion on L with V=9

e Choose local holomorphic frame ¢ for L
o Define local 1 form 7 s.t. Vxe = n(X)e
e h compatibility:

X[h(e, €)] h(Vxe,e) + h(e, Vxe) = ((X) + n(X))h(e, €)
=dlogle>* = H+7n

0 compatibility: Vxe = 0 for any X € TONY
Hence 7 is a (local) (1,0) form

Hence 1 = dlog |¢|?

Independent of choice of holomorphic frame
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(80G2)  iF¥ = 2(1- |of)

@ Choose and fix a holomorphic line bundle L of degree n over
>, and a holomorphic section ¢ of L.
@ Choose and fix a reference hermitian metric hg on L.

o Given any other hermitian metric h = e*“hg, where
u: ¥ — R, denote the corresponding compatible connexion
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Bradlow's approach to the moduli space

(BOG1) 3 ¢ =0
(80G2)  iF¥ = 2(1- |of)

@ Choose and fix a holomorphic line bundle L of degree n over
>, and a holomorphic section ¢ of L.

Choose and fix a reference hermitian metric hg on L.

Given any other hermitian metric h = e®“hg, where

u: ¥ — R, denote the corresponding compatible connexion
VY.
By construction, (¢, V") automatically solves (BOG1)

9" =0¢=0
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Bradlow's approach to the moduli space

e (BOG?2) reduces to a PDE for u

1 1
Au+ Sho(¢,¢)e* + (i F* = 5) =0
where FO = curvature of V° (connexion compatible with hg)
@ Similar to a PDE analyzed in detail by Kazdan and Warner

@ Bradlow shows solution u exists iff L satisfies Bradlow bound



Bradlow's approach to the moduli space

@ Solution uniquely determined (up to gauge equivalence) by
the divisor determined by ¢ (zero set of ¢, with multiplicities)



Bradlow's approach to the moduli space

@ Solution uniquely determined (up to gauge equivalence) by
the divisor determined by ¢ (zero set of ¢, with multiplicities)

e M, =1X"/S,, again can desingularize



Bradlow's approach to the moduli space

@ Solution uniquely determined (up to gauge equivalence) by
the divisor determined by ¢ (zero set of ¢, with multiplicities)

e M, =1X"/S,, again can desingularize

@ Samols’s formula (all zeros in a single patch U) still holds. L2
metric on M, is kahler



Bradlow's approach to the moduli space

@ Solution uniquely determined (up to gauge equivalence) by
the divisor determined by ¢ (zero set of ¢, with multiplicities)

e M, =1X"/S,, again can desingularize

@ Samols’s formula (all zeros in a single patch U) still holds. L2
metric on M, is kahler

@ Simplest case: ¥ = S?

n-vortex <« unordered set of n points on S?
< polynomial of degree at most n
p(z) = apz" +a1z" 4+ +a,

“— [ao,al,...,an] e CpP"

Hence M, = CP" in this case
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o Nonetheless, can compute volume of (M,,~,2) exactly!
@ Easiest case: ¥ = §2 again, so M, = CP"

wn

“Le2
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@ Volume form on M,: vol;2 =
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w, be any closed two form on M, with [, w, =1, for example
the kahler form of a suitably chosen Fubini-Study metric



The volume of moduli space (Manton et al)

e Can't find metric v,2 on M, exactly

o Nonetheless, can compute volume of (M,,~,2) exactly!
@ Easiest case: ¥ = §2 again, so M, = CP"

wn

“Le2

n!

Volume form on M,: vol;» =

Let X be a 2-cycle generating Ha(M,) = Z, for example the
projective line, X = {[ao, a1,0,...,0] : [a0,a1] € CP'}. Let
w, be any closed two form on M, with [, w, =1, for example
the kahler form of a suitably chosen Fubini-Study metric

Since H?(M,) = R, there is some a € R such that

w2 = aw,+dg
n

= volp = a—'w*n—l—dﬂl
n!

an

= VO](Mn) = m W:
H Cpn
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e Cohomology ring of CP" is H* = (Z,0,7,0,...,0,7Z) freely
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The volume of moduli space (Manton et al)

e Cohomology ring of CP" is H* = (Z,0,7,0,...,0,7Z) freely
generated by [w,] € H2. Hence, H*"(CP",Z) = 7 is
generated by w!, that is,

/ wl=1
cpo

n

Vol(M,) = %

Hence

@ It remains to compute «. But this is just

a:/sz
X

where X is any generator of Hy(CP")
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the sphere of coincident n-vortices. As a 2-cycle in CP" this
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o Final result: ., .
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Thermodynamics of a vortex gas

@ Statistical mechanics of geodesic flow on M, with
n~6x10%

o Flow on phase space T*M, with Hamiltonian H(p) = %|p|?
@ Gibbs distribution has partition function

1

7 = —H/TQ2n
(2mh)2n / "y
1

_ —379(@)pip/ T 42n pq2n
(m)%/ Wl pe

= (27;2>H/A/In\/det(w(q))d2”q

= (27;12) Vol(M,)

@ n vortices on a sphere of radius A > 4xn:

1 n T \"

=
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Thermodynamics of a vortex gas

Free energy F = —TlogZ
Pressure P = —0F /OA
Take limit n — oo, A — oo with p = n/A fixed

_ T
1—4np

=pT(1+4mp+---)

Coincides (to this order) with equation of state of gas of hard
disks of area 27.



@ AHM supports topological solitons called vortices

o Critical coupling: E > 7n, equality < Bog. eqns

@ Moduli space of static n-solitons, complex manifold of
dimension dimg M, = const x n (actually, const = 1)

o Kinetic energy restricted to M,, equips it with natural
Riemannian metric . Actually v is kahler

@ Geodesic motion in (M,,~) good approx to low energy
n-soliton dynamics

@ Point soliton model gives asymptotic formula for ~

@ Case where space is a compact Riemann surface is
mathemtically rich
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Other developments

@ Hyperbolic vortices:
o Y =R x (0,00), g = (dx? + dxp)?/x2
e Bogomol'nyi eqns become integrable
e Dimensional reduction of SDYM

@ Chern-Simons variants Scs = / ANdA
[to,t1] XX
o Vortices acquire electric charge
o Manton's first order system: Hamiltonian flow on (M, w;2)
o Collie-Tong: extra neutral scalar boson, vortex dynamics
modelled by Ricci geodesic flow on M,:

Vaydeq = fgp
e Baptista (after Salamon et al) studies big generalization

o Gauged sigma models, kahler target X with hamiltonian G
action

o Formal limit e* — oo, (sometimes) M, tends to
Hol,(X,X//G)

o Conjectural formulae for volume of Hol,(X, CP*)



