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Abstract

The low energy classical dynamics of topological solitions can often be modelled as geodesic motion in the
space of static solitons with respect to a natural Riemannian metric called the L2 metric. In this minicourse
we will develop techniques to calculate this metric, and extract information about the resultant dynamics,
for sigma model lumps and Abelian vortices. A recurrent theme will be interesting pheonomena arising due
to noncompactness of the moduli space of static solitons.

1 Lumps

A word of caution: moduli spaces in this minicourse will generally be noncompact and exhibit noncompact
properties (such as geodesic incompleteness). We will first consider lumps.

Consider a map ϕ : R2,1 → S2, where the Minkowski metric η = dt2 − dx2 − dy2. Consider the dynamics of the
field to be governed by the Lagrangian density

L =
1

2
∂µφ∂

µφ

i.e., φ being a (formal) critical point of the action functional S(φ) =
∫
R2,1 L, yielding the Euler–Lagrange

equations
�φ− (φ ·�φ)φ = 0 (1)

where � = ∂2
t −∂2

x−∂2
y . There is a conserved quantity, the energy E(φ) =

∫
R2

1
2 (φ2

t +φtx+φ2
y), where the integral

is over a time slice. Impose the energy to be finite and you get the boundary condition that the field should
be constant when approximating infinity, choose without loss of generality that φ → (0, 0, 1) for |(x, y)| → ∞.
This allows for interpreting φ as a map from R2 ∪ {∞} to S2, i.e. a map of S2 → S2. These kinds of map are
classified up to homotopy by the degree, which can be computed as

deg φ =
1

4π

∫
R2

φ · (φx × φy).

Note that the integrand corresponds to the area form of S2 times the Jacobian of φ. One may wonder how
does the energy E(φ) depend on the degree of the map. This result is known as the Polyakov bound (1974),
although it was known to Lichnerowicz in 1970.

0 ≤ 1

2

∫
R2

|φx + φ× φy|2 =

∫
R2

1

2
(|φx|2 + |φy|2) +

∫
R2

φx · φ× φy

=

∫
R2

1

2
(|φx|2 + |φy|2)−

∫
R2

φ · φx × φy = E(φ)− 4π deg(φ)

Thus we deduce that E(φ) ≥ 4π deg(φ) and equality holds if and only if

φx = −φ× φy. (2)

This is a first order differential equation characterizing the static solutions to the wave map equation (1). We
can easily see that it is equivalent to (since φ ⊥ φy) to φy = φ × φx. This establishes an almost complex
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structure JS : TS2 → TS2, JS2 : v 7→ φ× v with J2
S2 = −Id. Similarly, R2 ≡ C has an almost complex structure

JC : ∂x 7→ ∂y, ∂y 7→ −∂x. Then (2) coincides with

JS2 ◦ dφ = dφ ◦ JC. (3)

So, E(φ) ≥ 4π deg(φ) and equality holds iff φ is holomorphic.

We can now choose complex coordinates z in R2 and w the stereographic coordinate (from the South pole) in S2,

characterizing the holomorphicity of φ by the Cauchy–Riemann equation ∂(w◦φ)
∂z = 0. Note that in coordinates

we have merely a meromorphic function w(φ(z)) as the poles are not accesible. The general solution to this
equation is the rational function

w(z) =
a0 + a1z + · · ·+ anz

n

b0 + b1z + · · ·+ bnzn

with numerator and denominator with no common roots. The boundary condition w(∞) = 0 forces an = 0 and
b1 = 1 without loss of generality. The “moduli” space is thus Mn the degree n rational maps with w(∞) = 0,
which is an open subset of C2n once you remove the set of coefficients which yield common roots of numerator
and denominator, which is a codimension 1 subset.

All of this is statics of lumps. But what about dynamics? In general it is very difficult to write the t-dependent
solution, so we will attack the problem with another approach, not trying to directly solve the parabolic PDE.

Consider the Cauchy problem φ(0) ∈Mn, φt(0) ∈ Tφ(0)Mn and assume that the latter initial derivative is small,
in some sense yet to be made precise. Recall that the energy is conserved, and we have that

E(t) = E(0) =
1

2

∫
R2

|φt(0)|2 + 4πn

because φ(0) is a static solution (the kinetic kerms in ∂x, ∂y vanish).

The conjecture is that φ(t) never strays far from Mn.

Approximation: assume that φ(t) ∈Mn for all t, the adiabatic approximation. In that case the action restricts
to

S(φ) =

∫
R

dt

∫
R2

1

2

(
|φt|2 − |φx|2 − |φy|2

)
=

∫
R

dt

∫
C

1

2
|φt|2 − 4πn

This will yield an ODE in our moduli space. We consider the new variational problem and propose a curve

φ(t) =
a0(t) + a1(t)z + · · ·+ an−1(t)zn−1

b0(t) + b1(t)z + · · ·+ bn(t)zn

and plug it into the action. Call the free parameters (a(t), b(t)) ≡ qi(t).

S =

∫
R

dt

∫
C

dxdx
1

2

4

(1 + |w|2)2

∣∣∣∣∂w∂t
∣∣∣∣2

=

∫
R

dt

∫
C

dxdy
2(

1 + |w|2
)2

∂w

∂qi
∂w

∂qj︸ ︷︷ ︸
gij(q)

q̇iq̇
j

and we have a functional which is determined simply by geodesic motion with respect to some Hermitian metric.
There is an associated Kähler form

ω =
i

2
gijdq

i ∧ dqj

which can be shown to be closed as follows. Rewrite the metric as

gij(q) =

∫
C

∂

∂qi
∂

∂qj
log
(

1 + |w|2
)

dxdy

and from this it is easy to see that
∂gij
∂qk

=
∂gkj
∂qi and that

∂gij
∂qk

=
∂gij
∂qj

. This is equivalent to dω = 0. We thus

have a Kähler metric in our moduli space Mn.
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Problem: however, the metric is not well defined. For example, for n = 1, lumps of degree 1, we have that the
moduli space is given by

M1 =

{
w(z) =

λ

z − z0
: (λ, z0) ∈ C∗ × C

}
and when considering the ∂

∂λ direction we obtain a divergent matrix element

g (∂λ, ∂λ) = 4

∫
C

(
∂w
∂λ

)2(
1 + |w|2

)2

= 4

∫
C

1/z(
1 + |λ|2

|z|2

)2 = 2π

∫ ∞
0

drr
4/r2

(1 + λ2/r2)
2

and the last integrand goes like 1/r, which diverges upon integration over (0,∞).

The physical message is that λ has infinite inertia, it is infinitely costly to modify it. One can then restrict
to λ =constant and foliate the moduli space, with z0-metric being the Euclidean metric, and thus lumps will
“travel in straight lines”.

However, this is not a very good model of lump dynamics: although (1) does have solutions in which a single
lump just moves at constant velocity without changing shape, it also much more interesting solutions, in which
the lump shrinks and forms a singularity in finite time (i.e. λ(t)→ 0). So the parameter we’re freezing here has
interesting dynamics in the real wave map flow. So let us now work generally over a Riemann surface Σ; the
metric on Mn is then guaranteed to be well-defined.

The Polyakov bound is obtained in exactly the same manner, and now the L2-metric is well defined because
kinetic energies are finite, and is now properly a Kähler metric. Choose Σ = P1 for the simplest case of study.
Again the moduli space is

Mn =

{
a0 + a1z + · · ·+ anz

n

b0 + b1z + · · ·+ bnzn

}
,

rational maps S2 → S2. Now the equivalence class of coefficients is identified upon C∗ action, we should focus
not in particular tuples (a, b) but on their projective rays [a : b]. Thus, Mn ' CP2n+1. Now with our previously
studied metric, (Mn, g) is geodesically incomplete, which is a feature rather than a bug.

We now consider the flow induced by the wavemap equation for lumps (1).

Theorem 1.1 (Speight, 2012). Consider a one-parameter family of Cauchy problems given by φ(0) ∈Mn, and
φt(0) = εv for some v ∈ Tφ(0)Mn. Then ∃ε∗, τ∗ > 0 such that ∃! solution to the wave map equation

φ :

[
0,
τ∗
ε∗

]
× Σ→ S2

with these initial date, for all ε ∈ (0, ε∗). Furthermore, if we define the time re-scaled solution

φε : [0, τ ]× Σ S2

(τ, p) φ
(
τ
ε , p
)

this converges in C1 to the geodesic ψ(t) ∈ (Mn, g) with ψ(0) = φ(0), ψt(0) = v.

This gives rigorous support for our intuition that low energy lump dynamics should be well approximated by
geodesic motion in (Mn, g).

2 Vortices

We will now talk about vortices. Again we consider the Minkowski spacetime R1,2 and consider Higgs maps
φ : R1,2 → C and a connection A = Aµdxµ, with the induced covariant derivative Dµφ = ∂µφ− iAµφ. Take the
Lagrangian density

L =
1

2
DµφDµφ−

1

4
FµνF

µν − 1

8

(
1− |φ|2

)2

.
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It’s invariant under gauge transformation, and the Euler–Lagrange equations are given by these nonlinear
coupled 2nd order PDEs

DµD
µφ− 1

2

(
1− |φ|2

)
φ = 0

∂µF
µν +

i

2

(
φDνφ− φDνφ

)
= 0

There is a conserved energy given by

E =

∫
R2

1

2
|D0φ|2 +

1

2
F0iF0i︸ ︷︷ ︸

kinetic energy T

+
1

2
F12 +

1

2
|Diφ|2 +

1

8
(1− |φ|2)2︸ ︷︷ ︸

potential energy V

We want solutions with finite energy. Note that F0i = Ei, the electric field, while F12 = B, the magnetic field.
At infinity we would like |φ| → 1 and |Diφ| → 0. On a large circle, thus, φ ∼ eiχ and A must look like dχ. The
Higgs field could wrap around a lot , and thus we count the degree of the map as χ(2π)− χ(0) = 2πn for some
n ∈ Z. Then,

Φ =

∫
R2

B =

∫
R2

dA =

∮
S1∞

A = 2πn

Magnetic flux is quantized. We’d like something similar to the Polyakov bound in energy for lumps. The
analogue is the 1976 Bogomol’nyi bound. Interestingly, this was discovered a couple of years earlier by a
German condensed matter physicist, and the result was forgotten.

0 ≤ 1

2

∫
R2

|D1φ+ iD2φ|2 +

(
B − 1

2
(1− |φ|2)

)2

=
1

2

∫
R2

|D1φ|2 + |D2φ|2 + i
(
D1φD2φ−D1φD2φ

)
+B2 −B + |φ|2B +

1

4
(1− |φ|2)

= V − 1

2

∫
R2

B = V − πn

Thus V ≥ πn and equality holds if and only if{
D1φ+ iD2φ = 0 (V 1)

B = 1
2 (1− |φ|2) (V 2)

(4)

which are known as the vortex equations. Note that the first condition is a holomorphicity condition. The first
(V1) implies that φ vanishs at exactly n points counted with multiplicity. Denote them by z1, . . . , zn. This
defines an effective divisor of degree n. The converse is given by Taubes’s theorem, which characterizes the
moduli space of vortices in R2.

Theorem 2.1 (Taubes). Given a degree n effective divisor D, there exists a solution to the vortex equations with
(φ) = D. Furthermore, the solution is unique up to gauge transformation, smooth, and we have the following
localization result: ∀δ ∈ (0, 1) ∃C > 0 such that

|Dφ|, ||φ| − 1|, |B| ≤ Ce−(1−δ)|(x,y)|

Proof. More of a sketch. Taubes reformulated the equations into a 2nd order PDE with singularities. Define
h, χ implicitly by

φ = e
1
2h+iχ

noting that h is well defined on C \D although the phase need is defined up to 2πZ, in a branched way. These
will have singularities. One rewrites the fields in terms of h via

A = −1

2
? dh+ dχ

B = ?dA = −1

2
? d ? dh = −1

2
∆h

Then note that the vortex equations summarize as ∆h = eh− 1, valid on C \D. One can extend it to the entire
plane by considering the equation in a distributional sense, adding the adequate delta terms at the zeroes

∇2h = eh − 1 + 4π
∑
r

δ(z − zr).
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One can regularize the equation by absorbing the delta terms

h0 := −
∑
r

log

(
1 +

µ

|z − zr|

)
A

from which

∇2h0 = 4π
∑
r

δ(z − zr)− 4π
∑
r

µ

(|z − zr|2µ2)︸ ︷︷ ︸
g0

and then define v by h = h0 + v, and rewrite the equation in terms of v alone. Taubes defines an action for
which the equation for v

−∇2v + eh0ev + (g0 − 1) = 0

is the Euler–Lagrange equation, given by

a(v) =

∫
R2

1

2
|dv|2 + v(g0 − 1) + eh0(ev − 1).

Now some analytical considerations are in order. First of all, a is C1 map H1(R2)→ R, and indeed the (formal)
critical points are determined by the equation for v. Here H1 refers to the Sobolev space.

Secondly, a is strictly convex, meaning a(tv + (1− t)w) < ta(u) + (1− t)a(w) for all v, w ∈ H1(R2), t ∈ (0, 1).

And third, the functional is coercive, roughly meaning that a(v)→∞ as ‖v‖H1 →∞.

Then, by standard results in analysis, there exists a unique global minimum. Since h = log |φ|2, h ≤ 0 ⇐⇒
|φ| ≤ 1. Let us prove that φ lies always within the unit disk. Assume that h 6≤ 0. Then ∃z∗ such that h(z∗) > 0,
by the Maximum Principle, h(z∗) has to be a local minimum, just by looking at the PDE: ∇2h = tr ∂2h, the
trace of the Hessian. But ∇2h = eh − 1, which means that the Hessian is at the same time negative (by being
a maximum) and positive (by the PDE).

This concludes the sketch of the proof. Nothing is said about how to prove the localization properties.

Let Mn denote the space of vortex solutions modulo gauge group. We’ve just shown that these are divisors of
degree n. Represent them by a monic polynomial

p(z) = (z − z1) . . . (z − zn) = zn + an−1z
n−1 + · · ·+ a1z + a0

and notice how then Mn ' Cn, the coefficients of the polynomial giving the coordinates. It has a nontrivial
differentiable structure, since we are not parametrizing it by the roots, i.e. the divisor, but rather by the
coefficients of the corresponding monic polynomial.

Now we want to understand the low energy dynamics on this moduli space, considering again the approximation
in which we assume to “stay in” Mn. Restrict ourselves to fields such that (A(t), φ(t)) ∈Mn ∀t.

We use the temporal gauge A0 = 0, but we cannot forget the corresponding equation, which will now be
promoted to a constrain,

−∂iȦ+
i

2
(φφ̇− φφ̇)

⇐⇒ δȦ+ (iφ, φ̇)R2 = 0

where we are using the codifferential δ. Now we consider an infinitesimal gauge transformation

φ 7→ eiµφ ' φ+ iµφ,A 7→ A+ dµ

and then the L2-product 〈
(φ̇, Ȧ), (iµφ,dµ)

〉
=

∫
R2

(φ̇, iµφ) + (Ȧ,dµ)

=

∫
R2

(φ̇, iµφ) + µδȦ =
〈
µ, δȦ+ (iφ, φ̇)

〉
so (φ̇, Ȧ) is perpendicular to the gauge orbit at (φ,A). We then have the action with vanishing potential

S =

∫
R

dt(T −��V ) =

∫
R

d

∫
C

1

2
(|φ̇|2 + |A|2)
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This quadratic form defines a Riemmanian metric on the modili space precisely because we have fixed the gauge
properly.

We will now see the Strachan–Samols localization formula. Consider the zeroes z1(t), . . . , zn(t) moving in C.
Consider the corresponding transformation of fields

φ(t) = e
1
2h(t)+iχ(t)

where again we have that ∇2h(t) = eh(t) − 1 away from the zeroes. Differentiating with respect to t we obtain
that

∇2ḣ = ḣeh(t).

We have to choose a gauge such that Gauss’ law still holds.

Ȧ = −1

2
dḣ+ dχ̇, δA = −∇2χ = ehχ̇

and we define now η by ηφ = φ̇. Then

η =
1

2
ḣ− iχ̇ =⇒ ∇2η = ηeh (5)

away from the zeroes Trick: compute the kinetic energy

T =
1

2

∫
C
|Ȧ|2 + |φ̇|2,

and encircle the moving zeroes by circles of radius ε and trivially obtain the first following identity

T = lim
ε→0

∫
C\Sε

1

2
(|Ȧ|2 + |φ̇|2) = lim

ε→0

∫
C\Sε

1

2
dη ∧ dη +

1

2
eh|η|2 ? 1

= lim
ε→0

∫
C\Sε

d(η ∧ idη)−∇2η + ehη = lim
ε→0
−1

2

∫
C\Sε

η ∧ idη

where we have used the PDE satisfied by η away from D, (5). Computing the integral is now easier using the
following expansion

h(z) = 2 log |z − zr|2 + ar +
1

2
br(z − zr) +

1

2
(z − zr) + . . .

where ar and br care respectively some real and complex valued functions of the vortex positions {zs}. One
finds T can be written in terms of br,

T =
π

2

n∑
r=1

|żr|2 − 2
n∑

r,s=1

∂br
∂zs

żsżr

from which one obtains the Riemannian metric in the moduli space whose geodesic flow we are so much interested
in

g = π

n∑
r=1

dżrdżs −
n∑

r,s=1

∂br
∂zs

dżrdżs.

One can check by the formula again that the metric is actually Kähler.

3 Statistical mechanics of vortices

We will now consider vortices on the sphere. Throughout this section Σ = S2 although nothing is assumed yet
of the metric, which can be different from the round one. Let L � Σ be a smooth Hermitian line bundle over
Σ of degree n, φ ∈ Γ(Σ, L) a section and A ∈ A(L) a unitary connection. We want to find the minimizers of
the following functional

E(φ,A) =
1

2
‖dAφ‖2L2 +

1

2
‖FA‖2L2 +

1

8
‖τ − φ‖2L2 .

Again this admits a Bogomol’nyi bound E(φ,A) ≥ πτn, with equality holding if and only if

∂Aφ = 0, (V 1)

?FA =
1

2
(τ − |φ|2). (V 2)
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These are the vortex equations. Here u(1) = iR. Again there is a necessary condition for existence of solutions
to the vortex equations, obtained by integrating (V2) over Σ:

2πn =
1

2
(τ |Σ| − ‖φ‖2L2)

and therefore ‖φ‖2L2 = τ |Σ| − 4πnτ =: ε ≥ 0. The moduli space of solutions is (using results from other courses
in this conference, see Bradlow, Garćıa-Prada):

Mn =


∅ if ε < 0

{∗} if ε = 0

degree n effective divisors on Σ if ε > 0

Using the fact that Σ = S2, we can see degree n effective divisors first as Symn(Σ), and then parametrized by
polynomials in one complex variable of degree at most n up to C∗ action

p(z) = a0 + a1z + · · ·+ anz
n

Identify the divisor D with the set of roots of p(z), together with their multiplicities. If deg p < n, complete
the roots with the point at infinity ∞, since the polynomial is to be seen as a function in the sphere Σ via
stereographic projection from the South Pole.

Hence, we identify
Mn(Σ = S2)↔ [a0 : · · · : an] ∈ Pn

We now detail the construction of the L2 metric on Mn. We have a projection Vn � Mn from the space of
solutions to the moduli space, by quotienting out the gauge group G. Take a curve in Mn and now we need to
lift it (A(t), φ(t)). However, we need to choose the lift so that it is L2 orthogonal to the gauge orbits. This is
done, as shown in the previous lecture, by demanding Gauss’ law to be satisfied at each instant

δA+ (iφ, φ̇) = 0

and then we can define the squared length

gL2(v, v) =

∫
Σ

|φ̇|2 + |Ȧ|2

As it turns out, this metric is Kähler, and this is a nontrivial fact!

Once we have the metric, we can be interested in two things. First, in the low energy dynamics, with the
hypothesis that the geodesic flow induced by this metric approximates well the dynamics. Secondly, we can
consider the quantum dynamics!

Quantization and thermodynamics of vortices

In order to quantize this moduli space, we propose wavefunctions

ψ : R×Mn → C

demanding they satisfy the most naive Schrödinger equation one can think of in this context

i~
∂

∂t
ψ = −~2

2
∆gL2ψ.

Once we’ve done that we can write the partition function

Z(T ) =
∑

λ∈Spec(∆g
L2 )

e−
~2λ
2T .

Computing this seems hopeless as one needs to know the eigenvalues of the Laplacian of a metric which we
really have no real firm grip on yet... However, for high temperatures, there is an asymptotic expansion that
might give us some hope

Z(T ) '
(

4π
~2

2T

)?(
a0 + a1

(
~2

2T

)
+O

(
~2

2T

))
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As it turns out, the parameters a0 and a1 are geometric invariants of our moduli space with its L2 metric.

a0 = |Mn| = Vol(Mn, gL2) (6)

a1 =
1

6
EH(gL2) =

1

6

∫
Mn

SgL2 (7)

where EH denotes the Einstein-Hilbert action of the metric gL2 , that is, the integral of scalar curvature SgL2

over Mn. The rest of this section is dedicated to calculating these coefficients. We begin by exactly computing
the volume of the moduli space.

|Mn| =
∫
Mn

ωn

n!

since dimCMn = n, as it is the complex projective space of dimension n. However, even though we do not fully
know ω, the integral defining |Mn| depends only on its de Rham cohomology class [ω], and this we can compute
exactly. Note that

H2
dR(Pn) = R = SpanR(ω0)

for some normalized ω0 such that
∫
P1
0
ω0 = 1. Here P1

0 is the generator of the second homology, or one can even

see it as the generator of Pn as a CW-complex. This precise P1
0 is obtained in our vision of Pn as the projective

class of the coefficients of polynomials as the class of p(z) = a0 + a1z as [a0, a1] ranges over P1.

Our L2 Kähler form must be proportional to ω0, ω = αω0, and we can compute

α =

∫
P1
0

ω

from which we would know the volume of the whole moduli space

|Mn| =
αn

n!�
�
��>

1∫
Mn

ωn0

An idea by Nick Manton is to take another copy of S2 sitting inside of the moduli space, but a very special one,
not homologous to the generating P1

0. We define

M co
n ⊂Mn

the space of cocentered vortex solutions, i.e., these vortex solutions such that there is only one zero of degree n
of the Higgs field, (φ) = npt. This is clearly topologically a sphere, and corresponds to (projective classes of)
polynomials of the form

p(z) = (z − q)n = zn − nqzn−1 + · · ·+ (−q)n

where q ∈ C∪ {∞}. The homology relation is M co
n = n ·P1

0, by counting the intersection numbers. In that case∫
Mco
n

ω = n

∫
P1
0

ω = nα =⇒ α =
|M co

n |
n

And to deduce this integral we will use the localization formula. This was obtained as the kinetic energy of
vortex configurations by looking only around the zeroes of the Higgs field. The field h = log |φ|2 has, around
the coincident n-fold zero q, an expansion of the form

h = n log |z − q|2 + a+
1

2
b(z − q) +

1

2
b(z − q) + . . .

where a and b are respectively some unknown real and complex functions of q. By the Strachan-Samols
localization trick, one finds that

T =
1

2
nτ

(
τΩ(q, q) + 2

∂b

∂q

)
|q̇|2

where Ω is the conformal factor of the metric on Σ (that is, gΣ = Ω(z, z)dzdz). With this one can prove that
the Kähler form on M co

n is given by
ωMco

n
= τnπωΣ − inπ∂( bdq︸︷︷︸

β

),
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where we have pulled back via the diffeormorphism M co
n ' S2 = Σ the Kähler form on the base. Here β is a

(1,0)-form which will play an important role. We can actually just use the differential and write

ωMco
n

= τnπωΣ − inπd(β),

which is valid when using the stereographic coordinate q from the South Pole. One then needs to repeat this
computation from the North Pole, using z̃ = 1/z, q̃ = 1/q. Again

h = log |φ|2 = n log |1/z − 1/q|+ ã+
1

2
b̃

(
1

z
− 1

q

)
+ complex conjugate + . . .

and after expansion and comparison one deduces that b̃ = 2nq − q2b, from which

β̃ = bd(1/q) = β +
2n

q
dq

which if you look carefully is the transformation law of a connection on a degree 2n bundle on S2. Therefore this
β defines a (namesake) connection β. Note that dβ is precisely the curvature of this connection, well defined
on the entire sphere. We obtain the result

ωL2 |Mco
n

= τπnωΣ − nπiFβ .

Note how the Chern–Weil theory already tells us all we need to know about the cohomology class of Fβ . Thus,
we integrate this over our 2-sphere M co

n to obtain

|M co
n | = πnτ |Σ| − nπ2π(2n) = nπ(τ |Σ| − 4π).

Note the appearance of the dissolution parameter ε = τ |Σ| − 4π. We obtain thus that α = π(τ |Σ| − 4π). We
can already use this to obtain the volume of the entire moduli space

|Mn|L2 =
πn(τ |Σ| − 4π)n

n!
.

This concludes the computation of the first coefficient in the asymptotic expansion of the partition function
a0. The other one is actually simpler. Recall that the Einstein–Hilbert action is, for Kähler manifolds, more
manageable

EH(g) =

∫
Mn

Sg = 〈ρ, ω〉L2 =

∫
Mn

ρ ∧ ωn−1

(n− 1)!

where ρ is the Ricci form. So we only need compute the (de Rham class of the) Ricci form for the L2 metric in
the moduli space of vortices Mn.

Recall that the Ricci form is also the curvature of the connection on the line bundle K−1 = ΛnT 1,0Mn induced
by the Levi–Civita connection. Note that by Chern–Weil theory again we have that [ρ] = c1(K−1). And we
precisely know who the anticanonical bundle is for Mn = Pn, namely K−1 = O(n+ 1). Therefore∫

P1
0

ρ = 2π(n+ 1) =⇒ [ρ] = 2π(n+ 1)[ω0]

This immediately gives us the Einstein–Hilbert action.

EH(gL2) = 2π(n+ 1)πn−1 (τ |Σ| − 4π)n

(n− 1)! �
�
��>

1∫
Mn

ω0

One is now well prepared to tackle the quantum thermodynamics of vortices, through the geometry on the
(quantized) moduli space.

4 P1-vortices

We will now come back to noncompact moduli spaces. Consider vortices with target space P1. In particular,
let φ : Σ = R2 → S2 ⊂ R3, fix a unit vector e = (0, 0, 1) ∈ S2 and let’s gauge S1 rotations about the axis R · e.
Recall the usual Hamiltonian action of SO(3) on S2 which has a moment map µ(φ) = e · φ.

In this case a connection is simply A ∈ Ω1(Σ), and its covariant derivative is given by

dAφ = dφ−A(e× φ)

9



Consider the energy functional

E(φ) =
1

2

∫
R2

|dAφ|2 + |FA|2 + (e · φ)2︸ ︷︷ ︸
µ

.

Let us now impose finite energy. This requires φ to localize at the equator of the target S2, as we approach
spatial infinity, so that e ·φ→ 0. This means that at a circumference at spatial infinity S1

∞ ⊂ Σ we have a map
φ : S1

∞ → S1
eq, of some degree n ∈ Z.

On the other hand, it is required that φ be covariantly constant at spatial infinity |dAφ| → 0.

Note that the magnetic flux

Φ =

∫
R2

dA
Stokes

=

∮
S1∞

A = 2πn

is necessarily quantized. There are, however, extra topological charges in this theory. In bundle theory language
φ is a section of a S2-bundle over R2 which by R2 being contractible is necessarily trivial R2 × S2. There are
distinguished sections of this bundle, the constant North Pole and South Pole sections, denoted by e and −e.
Think of the image φ(R2) sitting inside the total space and we have therefore a two-dimensional manifold inside
a four-dimensional one with other distinguished two-dimensional surfaces given by the images of e and −e, and
thus we can consider the relative intersection numbers.

The possible intersection numbers are thus k+ = #(φ(Σ), e) and k− = #(φ(Σ),−e). However, these are
constrained by n = k+ − k−. For (k+, k−) = (1, 0) we have “North vortices” with flux Φ = 2π. For (k+, k−) =
(0, 1) we have “South antivortices” with flux Φ = −2π. Unlike the usual vortices and antivortices these do not
annihilate, but can coexist in equilibrium.

Again the Bogomol’nyi bound is obtained E ≥ 2π(k+ + k−) and equality holds if and only if{
∂Aφ = 0, ?FA = φ · e. (8)

If Σ is compact, then one would obtain again a Bradlow constraint

−|Σ| ≤ 2π(k+ − k−) =

∫
Σ

φ · e︸︷︷︸
∈[−1,1]

≤ |Σ|,

which is a bound on charge asymmetry. That is, it allows both k+ and k− to be arbitrarily large, provided they
are not very different from one another.

The moduli space can be seen as a symplectic quotient. The moduli space is the space of pairs of disjoint
divisors

Mk+,k−(Σ) ' Symk+(Σ)× Symk−(Σ) \∆

where ∆ is the big diagonal of non-disjoint divisors, i.e., pairs of divisors which share some point in common.
On Σ = C = R2 the symplectic quotient construction is purely formal, but it is feasible to prove that this is
indeed still the moduli space by direct analytic methods.

Theorem 4.1 (Yang). Let P,Q be effective divisors of degrees k+, k− on C with P ∩Q = ∅. Then there exists
a smooth solution to equations (8) with

� φ−1(e) = P

� φ−1(−e) = Q

� It is unique up to gauge.

� It is exponentially localized

Proof. We give here a sketch of the proof, which has the same key idea as in Taubes’s theorem for regular
vortices. We will trade the vortex equations in for a second order PDE for a single function. Define

h = log
1− e · φ
1 + e · φ

=

{
−∞ on P,

∞ on Q.

The equation rewritten for h reduces to (including distributional data for the zeroes of the divisors)

∇2h = 2
eh − 1

eh + 1
+ 4π

∑
x∈P

δx − 4π
∑
y∈Q

δy (9)
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which we can compare to Taubes’ equation

∇2h = eh − 1 + 4π
∑
x∈D

δx (10)

Note that (10) has a unique solution hD depending on the prescribed effective divisor D, smooth away from D
and exponentially localized, hD < 0.

We aim at construction of sub and supersolutions to (9). Define w0 := −hQ, i.e., minus the solution to Taubes
equation (10) for the divisor Q. So in particular w0 > 0. Furthermore

∇2w0 = 1− e−w0︸ ︷︷ ︸
>0

−4π
∑
y∈Q

δx <
2

1 + e−w0
(1− e−w0)− 4π

∑
y∈Q

δy + 4π
∑
x∈P

δx,

and so this is a supersolution to (9). Let us now take the solution to the Taubes equation for the divisor P ,
w∞ = hP < 0. It is a subsolution to (9):

∇2w∞ = ew∞ − 1︸ ︷︷ ︸
<0

+4π
∑
x∈P

δx >
2

ew∞ + 1
(ew∞ − 1) + 4π

∑
x∈P

δx − 4π
∑
y∈Q

δy

By general analytic arguments there must exist a solution of (9) trapped between the super and the subsolution.
One sets up an iteration scheme as follows. Consider F (s) = 2 tanh(s/2), which has the property F ′(s) < 1 ∀s ∈
R. Let C0 > 1 and w0 = −hQ, the supersolution. Define iteratively wn+1 as the solution to the PDE

∇2wn+1 − c0wn+1 = F (wn)− c0wn + 4π
∑
x∈P

δx − 4π
∑
y∈Q

δy,

which being linear has a guaranteed solution. We aim at showing that (wn) converges. We claim that the
sequence is monotonically decreasing

w∞ < . . . < wn < wn−1 < · · · < w1 < w0

To prove this, assume by induction that indeed wn < wn−1, i.e. wn − wn−1 < 0. Then

∇2(wn+1 − wn)− c0(wn+1 − wn) = F (wn)− F (wn−1)− c0(wn − wn−1)

= F ′(sn)︸ ︷︷ ︸
<1

(wn − wn−1)− c0 (wn − wn−1)︸ ︷︷ ︸
<0

> (1− c0)︸ ︷︷ ︸
<0

(wn − wn−1) > 0

By the maximum principle wn+1 − wn must be negative. Let us see this, by contradiction. Assume it is not
negative. Then wn+1 − wn attains a positive maximum at some z∗ ∈ C. But ∇2(wn+1 − wn)|z∗ > 0 by the
above computation. However, ∇2 is the trace of the Hessian, which must be negative definite at the maximum
z∗, and thus it is impossible for ∇2(wn+1 − wn) to be positive.

One then proves the inequalities for the initial step w0 > w1 and and by monotonicity the sequence converges.
The limit provides a smooth solution to (9), which is exponentially localized thanks to the monotonicity of the
above sequence.

The above theorem proves that the moduli space of P1-vortices is given by

Mk+,k−(Σ) ' Symk+(Σ)× Symk−(Σ) \∆

We now want to obtain a localization formula in order to obtain an expression for the L2-metric on this moduli
space. Let P,Q be a pair of effective divisors in the above moduli space. Define a sign function on all x ∈ P ∪Q:

s(x)

{
+1 x ∈ P
−1 x ∈ Q

Near some element zj ∈ P ∪Q there is an expansion for the function h solution to equation (9) close to zj given
by

s(zj)h = log |z − zj |2 + aj +
1

2
bj(z − zj) +

1

2
bj(z − zj) + . . .
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One then defines from the coefficients in the above expansion a local (1, 0) form

b =
∑

zj∈Q∪P
bjdzj .

Then the localization formula (Speight, Romão) asserts that the Kähler form of the L2 metric is

ωL2 = iπ

∑
j

dzj ∧ dzj − ∂b


There is a simple case in which interesting conclusions can be drawn. Consider k+ = k− = 1. The moduli space
is given by

Mk+,k−(Σ) = Σ× Σ \∆

and b globalizes as a connection on K−1
Mk+,k−

. For our studied case of Σ = C, there is an alternative parametriza-

tion of the moduli space via center of mass in C and relative position of the two vortices viaz1 + z2

2︸ ︷︷ ︸
Z

,
z1 − z2

2
= ε︸ ︷︷ ︸

ε

 ∈ C× C∗

The metric is rewritten in terms of these coordinates, taking into account the symmetry, as

gL2 = 4πdZdZ + F (|ε|)dεε

One can extract the F factor numerically and there is an analytical conjecture for its small |ε| asymptotics, as
F (|ε|) ∼ −8π log |ε|

If that is true (and it has very good numerical backing) then it happens that M1,1(C) is incomplete, and the
scalar curvature diverges as ε → 0. This implies that the moduli space cannot be isometrically embedded in
any compactification of itself.

There are some rigorous results for compact surfaces, obtained by elliptic estimates on the solutions h of Yang’s
equation which, after suitable regularization, is a smooth semilinear elliptic PDE on Σ.

1. For Σ = S2, M1,1(S2) is incomplete. Its volume is given by |M1,1(S2)| =
(
2π|S2|

)2
. (Speight, Romaão).

2. For Σ compact oriented surface of genus g or Σ = C, M1,1(Σ) is incomplete. (Garcia Lara)

3. For the flat 2-torus, the volume is |M1,1(Σ1)| = (2π|Σ|)2
+ 16π2|Σ|. (Garcia Lara). This last result is

remarkable: recall that b globalizes as a connexion on K−1(M1,1) which, in the case Σ = T 2 is a trivial
bundle. Hence, its curvature Fb is cohomologically trivial, so one might expect that∫

M1,1

Fb = 0,

which would imply that |M1,1| = (2π|Σ|)2 as for Σ = S2. But this ignores the fact that M1,1 is noncompact:
there is an extra term originating from the integral of b over the removed diagonal ∆ and this contributes
the extra volume of 4|Σ|(2π)2.

Some paths into the literature

The rigorous result on the adiabatic limit of wave-map flow is proved in

J.M. Speight, “The adiabatic limit of wave map flow on a two torus” Trans. Am. Math. Soc. 367
(2015) 12, 8997-9026 .

Taubes’s original existence proof for n-vortices in the plane is described in the book

Vortices and Monopoles by A. Jaffe and C. Taubes.

A comprehensive treatment of the L2 metric on the moduli space of vortices is given in chapter 3 of the book

Topological Solitons by N.S. Manton and P.M. Sutcliffe.
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This book also has extensive discussion of the geodesic approximation to soliton dynamics.

The Strachan-Samols localization trick first appeared in

I.A.B. Strachan, I. A. B., “Low-velocity scattering of vortices in a modified abelian Higgs model”,
J. Math. Phys. 33 (1992) 102–110,

in the (very) special case that the domain is the hyperbolic plane. Samols shortly afterwards converted it into
a more systematic method in

T.M. Samols, “Vortex scattering” Commun. Math. Phys. 145 (1992) 149–179.

The cohomological trick for computing the volume of Mn for linear vortices on a compact domain appears in

N.S. Manton and S.M. Nasir, “Volume of vortex moduli spaces” Commun. Math. Phys. 199 (1999)
591–604.

The Bogomol’nyi bound for the P1 model was discovered by Bernd Schroers

B.J. Schroers, “Bogomol’nyi solitons in a gauged O(3) sigma model” Phys. Lett. B 356 (1995)
291–296.

Yang’s original existence proof for P1 vortices on the plane is described in chapter 11 of the book

Solitons in Field Theory and Nonlinera Analysis by Yisong Yang.

A similar result but on compact domains is obtained in

L. Sibner, R. Sibner and Y. Yang, “Abelian Gauge Theory on Riemann Surfaces and New Topological
Invariants” Proc. R. Soc. Lond. A 456 (2000) 593–613.

The localization formula for the metric on the moduli space of P1 vortices appears in

N.M. Romão and J.M. Speight “The geometry of the space of BPS vortex–antivortex pairs” Com-
mun. Math. Phys. 379 (2020) 723–772.

This also presents numerical results on the geometry of M1,1(C) and rigorous results on incompleteness and
volume of M1,1 for the round two-sphere. Incompleteness for Σ = C and Σ compact but arbitrary were proved
in the PhD thesis of Rene Garcia Lara. This also contains a rigorous computation of the volume |M1,1(T 2)|.
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