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Topological solitons

Smooth, spatially localized, lump-like solutions of relativistic
nonlinear wave equations

Stable for topological reasons

Like strings. . .
hypothetical particles, resolve many theoretical puzzles in HEP

. . . only better!
exist in real world: magnetic flux tubes in superconductors,
magnetic bubbles, optical pulses, crystal dislocations
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Soliton moduli spaces

Interesting special case: static solitons exert no net force on each
other

Moduli space of static n-soliton solutions Mn, dimMn = n dimM1

Low energy dynamics reduces to geodesic motion in Mn!

Soliton dynamics←→ Riemannian geometry
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Plan

Planar antiferromagnets→ CP1 model

The Bogomol’nyi argument, Mn

The metric on Mn, soliton scattering

Other solitons

Open problems



Antiferromagnets

Square spin lattice: S : Z×Z→ S2

Neighbouring spin like to anti-align

Lattice energy: H := ∑
i,j

[2+Sij · (Si,j+1 +Si+1,j)]

Dynamics:
dSij

dτ
=−Sij ×

∂H
∂Sij

First order, spin couples to nearest neighbours.

Continuum limit?
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Antiferromagnets

dAαβ

dτ
= −(Bα,β−1 +Bαβ +Bα−1,β +Bα−1,β−1)

dBαβ

dτ
= −(Aα+1,β +Aα+1,β+1 +Aα,β+1 +Aα,β)

δ

x = αδ, y = βδ, t = 2τδ

Assumption:

Aα,β

Bα,β

}
δ→0−→

{
A(x ,y)
B(x ,y)

Replace Aα+1,β by A+δAx + 1
2 δ2Axx + · · · etc

Work to order δ2
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Antiferromagnets

2δAt = −A× [4B−2δ(Bx +By)+δ
2(Bxx +Byy +Bxy)]

2δBt = −B× [4A+2δ(Ax +Ay)+δ
2(Axx +Ayy +Axy)]

New fields: m =
1
2
(A+B) ϕ =

1
2
(A−B)

|m|= O(δ) , |ϕ|= 1+O(δ2)

mt = −(∂x +∂y)[m×ϕ]+
δ

4
[2ϕ× (ϕxx +ϕyy +ϕxy) (1)

δϕt = 4m×ϕ−δϕ× (ϕx +ϕy)+O(δ2) (2)

Solve (2): m =
δ

4

[
ϕ×ϕt −ϕx −ϕy

]
+O(δ2)

Subst in (1): ϕ×ϕtt = ϕ× (ϕxx +ϕyy)+O(δ)
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Antiferromagnets

Leading order

ϕ×�ϕ = ϕ×
(
ϕtt −ϕxx −ϕyy

)
= 0

�ϕ− (ϕ ·�ϕ)ϕ = 0 (∗)

Nonlinear wave equation! Lorentz invariant!

Variational formulation: action of field ϕ : R×Σ→ S2

S[ϕ] =
1
2

Z
R×Σ

(
|ϕt |2−|ϕx |2−|ϕy |2

)
dt dx dy

ϕ solves (∗) iff ϕ a critical point of S.

Physicists call this the CP1 model
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The Bogomol’nyi argument (Belavin, Polyakov, Lichnerowicz)

ϕtt −∆ϕ− [ϕ · (ϕtt −∆ϕ)]ϕ = 0

Static solutions are critical points of potential energy

E =
1
2

Z
Σ
|ϕx |2 + |ϕy |2

Assume ϕ(x)→ ϕ0 fixed as |x| → ∞. Then ϕ extends to a cts
map Σ∪{∞} ∼= S2→ S2

Fields fall into disjoint homotopy classes labelled by
n = degϕ ∈ Z. WLOG can assume n ≥ 0
Topological lower energy bound:

0 ≤ 1
2

Z
Σ
|ϕx +ϕ×ϕy |2 = E−

Z
Σ

ϕ · (ϕx ×ϕy) = E−4πn

E ≥ 4πn

E = 4πn ⇔ ϕx +ϕ×ϕy = 0 1st order PDE!
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The Bogomol’nyi argument

ϕx +ϕ×ϕy = 0 [⇔ ϕy −ϕ×ϕx = 0]

In fact, it’s the Cauchy Riemann condition!

S2 is a complex manifold. Can turn each tangent space into a
complex vector space of dimension 1.
Need to define (a+ ib)X for any X ∈ TϕS2,a,b ∈ R.
Suffices to define iX , i.e. need linear map

J : TϕS2→ TϕS2 s.t. J2 =−1

Then (a+ ib)X := aX +bJX . JX =−ϕ×X does the job.

Σ = R2 ∼= C is also a complex manifold.
JΣ∂x = ∂y , JΣ∂y =−∂x

Bogomol’nyi equation equivalent to dϕ◦ JΣ = J ◦dϕ

that is, ϕ : Σ→ S2 is holomorphic
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Moduli space

R
2

2

S

u(z)
x + iy = z

(z)φ

u(z) =
a0 +a1z + · · ·+anzn

b0 +b1z + · · ·+bnzn

Boundary condition: ϕ(∞) = (0,0,1)⇒ bn = 0.

u(z) =
a0 +a1z + · · ·+an−1zn−1 + zn

b0 +b1z + · · ·+bn−1zn−1

Moduli space Mn = Rat∗n ⊂ C2n, open
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Moduli space

M1 = C×C×

u(z) =
a0 + z

b0

Position −a0, width |b0|, orientation arg(b0)



Moduli space

M2, complicated manifold dimC M2 = 4.

Expect energy to localize around zeros of u. OK if well-separated

Lose identity when close, e.g. u = z2
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Geodesic approximation (Ward, after Manton)

E

Q
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4π n

E =
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Z
Σ
|ϕx |2 + |ϕy |2

S =
Z

dt

{
1
2

(Z
Σ
|ϕt |2

)
−E(ϕ)

}

Evolution conserves Etot = E(ϕ)+
1
2

Z
Σ
|ϕt |2

Constrain ϕ(t) to Mn

S|TMn =
Z

dt{1
2

γ(ϕ̇, ϕ̇)−4πn}

Geodesic motion on (Mn,γ) where γ = L2 metric.



Geodesic approximation (Ward, after Manton)

E

Q

Mn

n

4π n

E =
1
2

Z
Σ
|ϕx |2 + |ϕy |2

S =
Z

dt

{
1
2

(Z
Σ
|ϕt |2

)
−E(ϕ)

}

Evolution conserves Etot = E(ϕ)+
1
2

Z
Σ
|ϕt |2

Constrain ϕ(t) to Mn

S|TMn =
Z

dt{1
2

γ(ϕ̇, ϕ̇)−4πn}

Geodesic motion on (Mn,γ) where γ = L2 metric.



Geodesic approximation (Ward, after Manton)

E

Q

Mn

n

4π n

E =
1
2

Z
Σ
|ϕx |2 + |ϕy |2

S =
Z

dt

{
1
2

(Z
Σ
|ϕt |2

)
−E(ϕ)

}

Evolution conserves Etot = E(ϕ)+
1
2

Z
Σ
|ϕt |2

Constrain ϕ(t) to Mn

S|TMn =
Z

dt{1
2

γ(ϕ̇, ϕ̇)−4πn}

Geodesic motion on (Mn,γ) where γ = L2 metric.



Geodesic approximation (Ward, after Manton)

E

Q

Mn

n

4π n

E =
1
2

Z
Σ
|ϕx |2 + |ϕy |2

S =
Z

dt

{
1
2

(Z
Σ
|ϕt |2

)
−E(ϕ)

}

Evolution conserves Etot = E(ϕ)+
1
2

Z
Σ
|ϕt |2

Constrain ϕ(t) to Mn

S|TMn =
Z

dt{1
2

γ(ϕ̇, ϕ̇)−4πn}

Geodesic motion on (Mn,γ) where γ = L2 metric.



L2 metric

S
2

Σ

φ

X ∈ TϕMn is a section of ϕ−1TS2

Concretely, a map Σ→ R3 s.t. X(x) ·ϕ(x) = 0 everywhere. Then

γ(X ,Y ) =
Z
Σ

X ·Y .

So
γ(ϕ̇, ϕ̇) =

Z
Σ
|ϕt |2

Geodesic motion is constant speed motion along “straightest
possible” curve
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Two-lump scattering (Ward, Leese)

u(z) =
z2 +a1z +a0

b1z +b0

In general, geodesic flow very complicated

Trick: reduce dimension by finding totally geodesic submanifolds

Discrete group of isometries of M2, Z2×Z2, generated by

u(z) 7→ u(−z), u(z) 7→ u(z)

Fixed point set M̃2 ⊂M2

u(z) = λ(z2 +µ), λ ∈ R\{0},µ ∈ R

Lumps of equal width ∼ λ−
1
2 located where z2 =−µ
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Kähler property (Ruback)

Mn ⊂ C2n is itself a complex manifold, has a J : TϕMn→ TϕMn,
J2 =−1

Two natural structures on each tangent space, J and γ. Are they
compatible?
Yes: γ(JX ,JY ) = γ(X ,Y ) for all X ,Y ∈ TϕMn

γ is Hermitian
Even better, ∇J = 0 (J invariant under parallel transport)
γ is Kähler
Alternative characterization: define Kähler form

ω(X ,Y ) = γ(JX ,Y )

Hermitian⇒ ω(Y ,X) =−ω(X ,Y )
Kähler⇒ dω = 0
Consequence: centre of mass motion decouples, Mn = C×Mred

n

γ = 4πnγEuc + γred
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Important features

Integer topological charge n

Topological energy bound E ≥ E0n
Attained by solutions of a first order nonlinear PDE system,
“holomorphic”

Moduli space of energy minimizers Mn is a finite-dimensional
complex manifold, with a natural Riemannian metric

Metric is Kähler

Geodesics in Mn ↔ slow n-soliton trajectories

90◦ head-on scattering
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Other solitons

Obvious generalization:

ϕ : Σ→ N, E =
1
2

Z
Σ
|dϕ|2

Σ,N Riemannian mfds (harmonic map problem)

Antiferromagnets: Σ = C, N = S2

Inhomogeneous antiferromagnets: Σ = Σ2, N = S2

Σ,N Kähler, keeps key features: n = [ϕ∗ω]
Mn = holn(Σ,N), Kähler
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Other solitons: Gauge theory

ϕ a section of a complex vector bundle W over Σ

∇ = unitary connexion on W , curvature F

E =
1
2

Z
Σ
|∇ϕ|2 + |F |2 +U(ϕ)

n = Chern class of W

E ≥ E0n, equality iff (ϕ,∇) satisfy “self-duality” condition
Vortices: Σ2, W = line bundle

n = c1(Σ) =
R
Σ F

Mn = Sn(Σ), Kähler

Monopoles: Σ3 = R3, W = C2 bundle
n = subtle
Mn = Rat∗n, hyperkähler (Kähler w.r.t. three different complex
structures I,J,K , satisfying quaternion algebra)
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Other solitons: Gauge theory

Instantons: Σ4 = S4,R4, W = C2 bundle, no ϕ,
n = c2(W ) =

R
Σ tr(F ∧F)

Mn = {self-dual connexions} (meaning ∗F = F ), also hyperkähler

Calorons: Σ4 = S1×R3,T 2×R2, . . .

Monopoles = translation invariant instantons

Vortices = SO(3) invariant instantons
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Open questions: Geometry

Volume, diameter of Mn?

Curvature properties?

Periodic geodesics?

Ergodicity?

Symplectic geometry of (Mn,ω)?
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Open questions: Validity

Geodesic approximation based on physical intuition. Can we
prove it works, i.e. rigorously bound errors?

Proto-theorem: consider one-parameter family of IVPs for field
equation with initial data ϕ(0) = ϕ0 ∈Mn, ϕt(0) = εϕ1 ∈ Tϕ0Mn,
ε > 0. Define time-rescaled field

ϕε(τ) = ϕ(τ/ε).

Then there exists T > 0 such that ϕε : [0,T ]×Σ→ N converges
uniformly, as ε→ 0, to ψ(τ), the geodesic in Mn with initial data
(ϕ0,ϕ1).

Proved for vortices, monopoles (Stuart), CP1 lumps on T 2 (JMS)
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Concluding remarks

Geodesic approximation provides a beautiful link between
geometry and physics

Contributions from diverse sources: Atiyah, Hitchin + · · · ,
Gibbons, Manton + · · · , Ward + · · · , Witten, Sen

Mixes Riemannian, symplectic, algebraic geometry, geometric
analysis, particle physics

Lots of interesting, accessible problems

Further reading: “Topological Solitons” Manton and Sutcliffe
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