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Topological solitons

@ Smooth, spatially localized, lump-like solutions of relativistic
nonlinear wave equations
@ Stable for topological reasons
@ Like strings. ..
hypothetical particles, resolve many theoretical puzzles in HEP
@ ...only better!

exist in real world: magnetic flux tubes in superconductors,
magnetic bubbles, optical pulses, crystal dislocations
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Soliton moduli spaces

@ Interesting special case: static solitons exert no net force on each
other

@ Moduli space of static n-soliton solutions M,, dimM, = ndim M,
@ Low energy dynamics reduces to geodesic motion in M!

@ Soliton dynamics «—— Riemannian geometry



Planar antiferromagnets — CP' model
The Bogomol’'nyi argument, M,

The metric on M, soliton scattering
Other solitons

Open problems



Antiferromagnets

@ Square spin lattice: S : Z x Z — S?






Antiferromagnets

@ Square spin lattice: S : Z x Z — S?
@ Neighbouring spin like to anti-align

i

@ Lattice energy: H .= Z [24+Sj - (Sij+1+Sit1,)]
i.j



Antiferromagnets

@ Square spin lattice: S : Z x Z — S?
@ Neighbouring spin like to anti-align

i
H

@ Lattice energy: H .= Z [24+Sj - (Sij+1+Sit1,)]
i.j

@ Dynamics:

oH

First order, spin couples to nearest neighbours.

as;
—— = —S,'j X
art



Antiferromagnets

@ Square spin lattice: S : Z x Z — S?
@ Neighbouring spin like to anti-align

i
H

@ Lattice energy: H .= Z [24+Sj - (Sij+1+Sit1,)]
i.j

@ Dynamics:

oH

First order, spin couples to nearest neighbours.

as;
—— = —S,'j X
art

@ Continuum limit?
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dAqp

at
dBop

at

= _(Ba,ﬁ—1 + BocB + Boc—LB + ch—1,[3—1 )

= _(Aa—H,B +Aa+1,[3+1 +A0L.,B+1 +AOL,B)
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Antiferromagnets

dA
Taﬁ = —(Ba,ﬁ—1 + Boc[} + BOL—Lﬁ + BCX—1-,B—1 )
dB
Taﬁ = ~(Aap1ptAoripr1 +Aaprr +Aap)

@ x=00, y =0, t =218

© e 0 es0 ® O @ Assumption:

e O o e O o

O e O e O e O AOL,B } Sig { A(X?y)
e O e O e O e BOL,-B B(X7y)

® Replace Aq1p by A+08A+18%A+ - efc
@ Work to order &
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28A; = —Ax[4B—28(By+By)+5%(Bw +By, +Byy)]
28B; = —Bx[4A+28(Ac+Ay)+ (A +Ay, +Ay)]

1 1
@ New fields: m:E(A—i-B) ¢=—-(A—-B)

2
o Im=0(3) , |o]=1+0(5)
o
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3¢r = 4mx@—38¢ x (¢x+¢y)+ O(5°) (2)
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Antiferromagnets

28A; = —Ax[4B—28(By+By)+5%(Bw +By, +Byy)]
28B; = —Bx[4A+28(Ac+Ay)+ (A +Ay, +Ay)]

1 1
@ New fields: m:E(A—i-B) ¢=—-(A—-B)

2
o Im=0(3) , |o]=1+0(5)
o
m; = —(aX“‘ay)[mX(P]"‘Z[Q(PX(‘Pxx+(Pyy+(ny) (1)

3¢r = 4mx@—38¢ x (¢x+¢y)+ O(5°) (2)

o
@ Solve (2): m= Z[(PX(Pt_(PX_(py] +0(8%)
@ Substin(1):  @X @y =0 X (Pxx + @yy) + O(3)
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@ Leading order

(PXD(P:(PX((Ptt—(Pxx—(Pyy)
Oo—(¢-Op)¢ = 0 (¥

Nonlinear wave equation! Lorentz invariant!

@ Variational formulation: action of field ¢ : R x ¥ — S?

’
S :,/ 2 _loy? —|o,|?) dtdx d
ol =5 [ (0" = loxl* —|oy|*) dtoxdy

¢ solves (x) iff @ a critical point of S.
@ Physicists call this the CP' model
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O —AQ—[0- (01 — AP)l9=0

@ Static solutions are critical points of potential energy

1
E=5 Llodf+lo)f

@ Assume @(x) — @ fixed as |x| — . Then @ extends to a cts
map ¥ U {eo} =2 §% — S?

@ Fields fall into disjoint homotopy classes labelled by
n=deg® € Z. WLOG can assume n> 0

@ Topological lower energy bound:

]
0 < 5/|<px+<pxcpy\2=E—/<p-(<pxx<py)=E—4nn
> >



The Bogomol'nyi argument (Belavin, Polyakov, Lichnerowicz)

O —AQ—[0- (01 — AP)l9=0

@ Static solutions are critical points of potential energy

1
E=5 Llodf+lo)f

@ Assume @(x) — @ fixed as |x| — . Then @ extends to a cts
map ¥ U {eo} =2 §% — S?

@ Fields fall into disjoint homotopy classes labelled by
n=deg® € Z. WLOG can assume n> 0

@ Topological lower energy bound:

1
< §/>:|(Px+(P><(py‘2:E_/Z(P'((PXX(P}/):E_‘mn

E > 4mn

E = 4mnn & Ox+@x@,=0 1st order PDE!
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The Bogomol'nyi argument

Ox+OxQ, =0 [& @ —0xX@=0]

@ Infact, it's the Cauchy Riemann condition!

@ S?is a complex manifold. Can turn each tangent space into a
complex vector space of dimension 1.
Need to define (a+ ib)X for any X € T,S?,a,b € R.
Suffices to define iX, i.e. need linear map

JiTpS? — ToS® st S =1

Then (a+ib)X := aX + bJX. JX = —@ x X does the job.
e ¥ =R?2=Cis also a complex manifold.
Jsdx =0y, Jsd, = —dy
@ Bogomol'nyi equation equivalent to dpoJy = Jod@
thatis, ¢ : ¥ — S? is holomorphic
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_@taizt-tapZ"
~ bo+biz+ -+ byz"

u(z)

@ Boundary condition: ¢() = (0,0,1) = b, = 0.

u(z) = a+az+--+ap1z2" 142"
- botbizt by g2

@ Moduli space M, = Rat’ C C?", open



Moduli space

J M1:(C><(C><

a+z

@ Position —ay,

)
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Moduli space

@ My, complicated manifold dimc Mo = 4.

@ Expect energy to localize around zeros of u. OK if well-separated

@ Lose identity when close, e.g. u = Z°

H e
i
W

'I | | i 1\
ﬂa#&'ﬂ"”“%‘i‘%ﬁlﬂﬁ\
f,;fa:u,';,n‘,".‘.‘..||ﬂ,‘||l\|1n
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Geodesic approximation (Ward, after Manton)

1
E=3 L los+loy?

dmn

s=[a{3([lof)-E@)

]
@ Evolution conserves Ey; = E(9) + 5/ e |?
bx

@ Constrain ¢(t) to M,

1 ..
Slrm, = /df{EY((P,(P)—M”}

Geodesic motion on (M,,Y) where Y= L2 metric.
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L2 metric

® X € TyM, is a section of ¢~ ' TS?
Concretely, a map & — R3 s.t. X(x) - @(x) = 0 everywhere. Then

ﬂxn:éxw
So
v6.0) = [ ol

@ Geodesic motion is constant speed motion along “straightest
possible” curve
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Two-lump scattering (Ward, Leese)

u(z) = Z2+ajz+ay
N byz+ by

@ In general, geodesic flow very complicated
@ Trick: reduce dimension by finding totally geodesic submanifolds
@ Discrete group of isometries of My, Z» X Z», generated by

u(z) = u(=2),  u(z)— u(2)

@ Fixed point set I\7I2 C My
u(z) =M +n), AER\{0}ucR

Lumps of equal width ~ A~z located where 22 = —u



Two-lump scattering

uiz)=MZ2+u), reR\{0},ueR

g |



Two-lump scattering
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Kahler property (Ruback)

M, C C?"is itself a complex manifold, has a J : TyM, — T,Mp,
J2=—1

Two natural structures on each tangent space, J and v. Are they
compatible?

Yes: Y(JX,JY) =7y(X,Y) forall X,Y € TeM,

Y is Hermitian

Even better, VJ = 0 (J invariant under parallel transport)

v is Kahler

Alternative characterization: define K&hler form

o(X,Y)=v(JX,Y)

Hermitian = o(Y, X) = —o(X,Y)
Kéhler = dw =0
Consequence: centre of mass motion decouples, M, = C x M

Y = 4nNYEue + Yred
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Important features

Integer topological charge n

@ Topological energy bound E > Eyn
Attained by solutions of a first order nonlinear PDE system,
“holomorphic”

@ Moduli space of energy minimizers M, is a finite-dimensional
complex manifold, with a natural Riemannian metric

@ Metric is Kahler
@ Geodesics in M, <+ slow n-soliton trajectories
@ 90° head-on scattering



Other solitons

@ Obvious generalization:

1
¢: TN, E= [ |dof
2J)s

>, N Riemannian mfds (harmonic map problem)



Other solitons

@ Obvious generalization:

1
¢: TN, E= [ |dof
2J)s

>, N Riemannian mfds (harmonic map problem)
@ Antiferromagnets: ¥ =C, N = S



Other solitons

@ Obvious generalization:

1
¢: TN, E= [ |dof
2J)s

>, N Riemannian mfds (harmonic map problem)
@ Antiferromagnets: ¥ =C, N = S
@ Inhomogeneous antiferromagnets: ¥ = Y2, N = S



Other solitons

@ Obvious generalization:

’
¢:X —N, E:f/\d(p|2
2J)x

>, N Riemannian mfds (harmonic map problem)
@ Antiferromagnets: ¥ =C, N = S
@ Inhomogeneous antiferromagnets: ¥ = Y2, N = S

@ X, N Kahler, keeps key features: n = [¢* ]
M, = hol,(Z, N), Kahler
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Other solitons: Gauge theory

¢ a section of a complex vector bundle W over &

@ V = unitary connexion on W, curvature F
1
E = 5 [ IVoP+IF+ U(e)
n = Chernclass of W

E > Eyn, equality iff (¢, V) satisfy “self-duality” condition
Vortices: Y2, W = line bundle

o n=c(X)=[sF

e M, = S,(X), Kahler
Monopoles: 32 = R3, W = C? bundle

@ n=subtle

e M, = Rat},, hyperkéhler (Kahler w.r.t. three different complex
structures /, J, K, satisfying quaternion algebra)
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Other solitons: Gauge theory

@ Instantons: ¥* = S* R*, W = C? bundle, no ¢,

o n=c(W)= [str(FAF)
e M, = {self-dual connexions} (meaning xF = F), also hyperkahler

@ Calorons: ¥4 =8" x R?, T2 x R?,.
@ Monopoles = translation invariant instantons

@ Vortices = SO(3) invariant instantons



Open questions: Geometry

Volume, diameter of M,?
Curvature properties?
Periodic geodesics?
Ergodicity?

Symplectic geometry of (M, ®)?
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truncate
truncate

Geodesic quantize
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Open questions: Quantization

Classical quantize Quantum
Field Theory Field Theory

truncate
truncate

Geodesic quantize

2?22
Approximation Y

@ Wavefunction y : R xM, — C

oy 1

— =
Jat 2

Spectral geometry of M,



Open questions: Validity

@ Geodesic approximation based on physical intuition. Can we
prove it works, i.e. rigorously bound errors?
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@ Geodesic approximation based on physical intuition. Can we
prove it works, i.e. rigorously bound errors?

@ Proto-theorem: consider one-parameter family of IVPs for field
equation with initial data ¢(0) = @y € My, ¢:(0) = @1 € Ty, M,
€ > 0. Define time-rescaled field

0c(1) = (t/¢).

Then there exists T > 0 such that ¢ : [0, T| x ¥ — N converges
uniformly, as € — 0, to y(t), the geodesic in M,, with initial data

(0, 01).



Open questions: Validity

@ Geodesic approximation based on physical intuition. Can we
prove it works, i.e. rigorously bound errors?

@ Proto-theorem: consider one-parameter family of IVPs for field
equation with initial data ¢(0) = @y € My, ¢:(0) = @1 € Ty, M,
€ > 0. Define time-rescaled field

0c(1) = (t/¢).

Then there exists T > 0 such that ¢ : [0, T| x ¥ — N converges
uniformly, as € — 0, to y(t), the geodesic in M,, with initial data
(90, P1).

@ Proved for vortices, monopoles (Stuart), CP' lumps on T2 (JMS)
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Concluding remarks

@ Geodesic approximation provides a beautiful link between
geometry and physics

@ Contributions from diverse sources: Atiyah, Hitchin +-- - -,
Gibbons, Manton +---, Ward + - - -, Witten, Sen

@ Mixes Riemannian, symplectic, algebraic geometry, geometric
analysis, particle physics

@ Lots of interesting, accessible problems
@ Further reading: “Topological Solitons” Manton and Sutcliffe



