The Geometry of Soliton Moduli Spaces

Martin Speight University of Leeds, UK

December 14, 2009

▲ロト ▲団ト ▲ヨト ▲ヨト 三回 - のへの

• Smooth, spatially localized, lump-like solutions of relativistic nonlinear wave equations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

• Smooth, spatially localized, lump-like solutions of relativistic nonlinear wave equations

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Stable for topological reasons

- Smooth, spatially localized, lump-like solutions of relativistic nonlinear wave equations
- Stable for topological reasons
- Like strings...

hypothetical particles, resolve many theoretical puzzles in HEP

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- Smooth, spatially localized, lump-like solutions of relativistic nonlinear wave equations
- Stable for topological reasons
- Like strings...

hypothetical particles, resolve many theoretical puzzles in HEP

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

...only better!

exist in real world: magnetic flux tubes in superconductors, magnetic bubbles, optical pulses, crystal dislocations

Interesting special case: static solitons exert no net force on each other

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Interesting special case: static solitons exert no net force on each other

• Moduli space of static *n*-soliton solutions M_n , dim $M_n = n \dim M_1$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

 Interesting special case: static solitons exert no net force on each other

• Moduli space of static *n*-soliton solutions M_n , dim $M_n = n \dim M_1$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Low energy dynamics reduces to geodesic motion in M_n!

 Interesting special case: static solitons exert no net force on each other

Moduli space of static n-soliton solutions M_n, dim M_n = n dim M₁

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Low energy dynamics reduces to geodesic motion in M_n!
- Soliton dynamics ←→ Riemannian geometry

• Planar antiferromagnets $\to \mathbb{C}P^1$ model

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- The Bogomol'nyi argument, M_n
- The metric on M_n, soliton scattering
- Other solitons
- Open problems

• Square spin lattice: $\mathbf{S} : \mathbb{Z} \times \mathbb{Z} \to S^2$

- Square spin lattice: $\mathbf{S} : \mathbb{Z} \times \mathbb{Z} \to S^2$
- Neighbouring spin like to anti-align

▲□▶ ▲□▶ ▲□▶ ★ □▶ = 三 の < @

- Square spin lattice: $\mathbf{S} : \mathbb{Z} \times \mathbb{Z} \to S^2$
- Neighbouring spin like to anti-align

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Square spin lattice: $\mathbf{S} : \mathbb{Z} \times \mathbb{Z} \to S^2$
- Neighbouring spin like to anti-align

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

First order, spin couples to nearest neighbours.

- Square spin lattice: $\mathbf{S} : \mathbb{Z} \times \mathbb{Z} \to S^2$
- Neighbouring spin like to anti-align

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

First order, spin couples to nearest neighbours.

Continuum limit?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

・ロト・日本・日本・日本・日本・日本

▲ロト▲聞▶▲目▶▲目▶ 目 のへの

$$\begin{array}{ll} \displaystyle \frac{d\mathbf{A}_{\alpha\beta}}{d\tau} & = & -(\mathbf{B}_{\alpha,\beta-1} + \mathbf{B}_{\alpha\beta} + \mathbf{B}_{\alpha-1,\beta} + \mathbf{B}_{\alpha-1,\beta-1}) \\ \displaystyle \frac{d\mathbf{B}_{\alpha\beta}}{d\tau} & = & -(\mathbf{A}_{\alpha+1,\beta} + \mathbf{A}_{\alpha+1,\beta+1} + \mathbf{A}_{\alpha,\beta+1} + \mathbf{A}_{\alpha,\beta}) \end{array}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$\begin{array}{ll} \displaystyle \frac{d\mathbf{A}_{\alpha\beta}}{d\tau} & = & -(\mathbf{B}_{\alpha,\beta-1} + \mathbf{B}_{\alpha\beta} + \mathbf{B}_{\alpha-1,\beta} + \mathbf{B}_{\alpha-1,\beta-1}) \\ \displaystyle \frac{d\mathbf{B}_{\alpha\beta}}{d\tau} & = & -(\mathbf{A}_{\alpha+1,\beta} + \mathbf{A}_{\alpha+1,\beta+1} + \mathbf{A}_{\alpha,\beta+1} + \mathbf{A}_{\alpha,\beta}) \end{array}$$

- $x = \alpha \delta$, $y = \beta \delta$, $t = 2\tau \delta$
- Assumption:

$$\begin{array}{c} \mathbf{A}_{\alpha,\beta} \\ \mathbf{B}_{\alpha,\beta} \end{array} \right\} \quad \stackrel{\delta \to 0}{\longrightarrow} \quad \left\{ \begin{array}{c} \mathsf{A}(x,y) \\ \mathsf{B}(x,y) \end{array} \right.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

$$\begin{array}{lll} \displaystyle \frac{d\mathbf{A}_{\alpha\beta}}{d\tau} & = & -(\mathbf{B}_{\alpha,\beta-1} + \mathbf{B}_{\alpha\beta} + \mathbf{B}_{\alpha-1,\beta} + \mathbf{B}_{\alpha-1,\beta-1}) \\ \displaystyle \frac{d\mathbf{B}_{\alpha\beta}}{d\tau} & = & -(\mathbf{A}_{\alpha+1,\beta} + \mathbf{A}_{\alpha+1,\beta+1} + \mathbf{A}_{\alpha,\beta+1} + \mathbf{A}_{\alpha,\beta}) \end{array}$$

•
$$x = \alpha \delta$$
, $y = \beta \delta$, $t = 2\tau \delta$

$$\begin{array}{c} \mathbf{A}_{\alpha,\beta} \\ \mathbf{B}_{\alpha,\beta} \end{array} \right\} \quad \stackrel{\delta \to 0}{\longrightarrow} \quad \left\{ \begin{array}{c} \mathsf{A}(x,y) \\ \mathsf{B}(x,y) \end{array} \right.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

• Replace $\mathbf{A}_{\alpha+1,\beta}$ by $\mathbf{A} + \delta \mathbf{A}_x + \frac{1}{2} \delta^2 \mathbf{A}_{xx} + \cdots$ etc

• Work to order δ^2

$$\begin{aligned} 2\delta A_t &= -A \times [4B - 2\delta(B_x + B_y) + \delta^2(B_{xx} + B_{yy} + B_{xy})] \\ 2\delta B_t &= -B \times [4A + 2\delta(A_x + A_y) + \delta^2(A_{xx} + A_{yy} + A_{xy})] \end{aligned}$$

$$2\delta A_t = -A \times [4B - 2\delta(B_x + B_y) + \delta^2(B_{xx} + B_{yy} + B_{xy})]$$

$$2\delta B_t = -B \times [4A + 2\delta(A_x + A_y) + \delta^2(A_{xx} + A_{yy} + A_{xy})]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• New fields:
$$\mathbf{m} = \frac{1}{2}(A+B)$$
 $\phi = \frac{1}{2}(A-B)$

$$2\delta A_t = -A \times [4B - 2\delta(B_x + B_y) + \delta^2(B_{xx} + B_{yy} + B_{xy})]$$

$$2\delta B_t = -B \times [4A + 2\delta(A_x + A_y) + \delta^2(A_{xx} + A_{yy} + A_{xy})]$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

• New fields:
$$\mathbf{m} = \frac{1}{2}(A+B)$$
 $\phi = \frac{1}{2}(A-B)$

 $\bullet \ |\textbf{m}| = \textit{O}(\delta) \quad , \quad |\phi| = 1 + \textit{O}(\delta^2)$

$$2\delta A_t = -A \times [4B - 2\delta(B_x + B_y) + \delta^2(B_{xx} + B_{yy} + B_{xy})]$$

$$2\delta B_t = -B \times [4A + 2\delta(A_x + A_y) + \delta^2(A_{xx} + A_{yy} + A_{xy})]$$

• New fields:
$$\mathbf{m} = \frac{1}{2}(A+B)$$
 $\phi = \frac{1}{2}(A-B)$
• $|\mathbf{m}| = O(\delta)$, $|\phi| = 1 + O(\delta^2)$

$$\mathbf{m}_{t} = -(\partial_{x} + \partial_{y})[\mathbf{m} \times \boldsymbol{\varphi}] + \frac{\delta}{4}[2\boldsymbol{\varphi} \times (\boldsymbol{\varphi}_{xx} + \boldsymbol{\varphi}_{yy} + \boldsymbol{\varphi}_{xy}) \quad (1)$$

$$\delta \boldsymbol{\varphi}_{t} = 4\mathbf{m} \times \boldsymbol{\varphi} - \delta \boldsymbol{\varphi} \times (\boldsymbol{\varphi}_{x} + \boldsymbol{\varphi}_{y}) + O(\delta^{2}) \quad (2)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$2\delta A_t = -A \times [4B - 2\delta(B_x + B_y) + \delta^2(B_{xx} + B_{yy} + B_{xy})]$$

$$2\delta B_t = -B \times [4A + 2\delta(A_x + A_y) + \delta^2(A_{xx} + A_{yy} + A_{xy})]$$

• New fields:
$$\mathbf{m} = \frac{1}{2}(A+B)$$
 $\phi = \frac{1}{2}(A-B)$
• $|\mathbf{m}| = O(\delta)$, $|\phi| = 1 + O(\delta^2)$

$$\mathbf{m}_{t} = -(\partial_{x} + \partial_{y})[\mathbf{m} \times \boldsymbol{\varphi}] + \frac{\delta}{4} [2\boldsymbol{\varphi} \times (\boldsymbol{\varphi}_{xx} + \boldsymbol{\varphi}_{yy} + \boldsymbol{\varphi}_{xy}) \quad (1)$$

$$\delta \boldsymbol{\varphi}_{t} = 4\mathbf{m} \times \boldsymbol{\varphi} - \delta \boldsymbol{\varphi} \times (\boldsymbol{\varphi}_{x} + \boldsymbol{\varphi}_{y}) + O(\delta^{2}) \quad (2)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• Solve (2):
$$\mathbf{m} = \frac{\delta}{4} \big[\mathbf{\varphi} \times \mathbf{\varphi}_t - \mathbf{\varphi}_x - \mathbf{\varphi}_y \big] + O(\delta^2)$$

$$\begin{aligned} 2\delta A_t &= -A \times [4B - 2\delta(B_x + B_y) + \delta^2(B_{xx} + B_{yy} + B_{xy})] \\ 2\delta B_t &= -B \times [4A + 2\delta(A_x + A_y) + \delta^2(A_{xx} + A_{yy} + A_{xy})] \end{aligned}$$

• New fields:
$$\mathbf{m} = \frac{1}{2}(A+B)$$
 $\phi = \frac{1}{2}(A-B)$
• $|\mathbf{m}| = O(\delta)$, $|\phi| = 1 + O(\delta^2)$

$$\mathbf{m}_{t} = -(\partial_{x} + \partial_{y})[\mathbf{m} \times \mathbf{\phi}] + \frac{\delta}{4}[2\mathbf{\phi} \times (\mathbf{\phi}_{xx} + \mathbf{\phi}_{yy} + \mathbf{\phi}_{xy}) \quad (1)$$

$$\delta \mathbf{\phi}_{t} = 4\mathbf{m} \times \mathbf{\phi} - \delta \mathbf{\phi} \times (\mathbf{\phi}_{x} + \mathbf{\phi}_{y}) + O(\delta^{2}) \quad (2)$$

• Solve (2):
$$\mathbf{m} = \frac{\delta}{4} \big[\boldsymbol{\varphi} \times \boldsymbol{\varphi}_t - \boldsymbol{\varphi}_x - \boldsymbol{\varphi}_y \big] + O(\delta^2)$$

• Subst in (1): $\phi \times \phi_{tt} = \phi \times (\phi_{xx} + \phi_{yy}) + O(\delta)$

• Leading order

$$\mathbf{\phi} \times \Box \mathbf{\phi} = \mathbf{\phi} \times (\mathbf{\phi}_{tt} - \mathbf{\phi}_{xx} - \mathbf{\phi}_{yy}) = \mathbf{0}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• Leading order

$$\begin{split} \phi \times \Box \phi &= \phi \times \left(\phi_{tt} - \phi_{xx} - \phi_{yy} \right) = 0 \\ \Box \phi - \left(\phi \cdot \Box \phi \right) \phi &= 0 \quad (*) \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Leading order

$$\begin{split} \phi \times \Box \phi &= \phi \times \left(\phi_{tt} - \phi_{xx} - \phi_{yy} \right) = 0 \\ \Box \phi - \left(\phi \cdot \Box \phi \right) \phi &= 0 \quad (*) \end{split}$$

Nonlinear wave equation! Lorentz invariant!

• Variational formulation: action of field $\phi:\mathbb{R}\times\Sigma\to S^2$

$$S[\varphi] = \frac{1}{2} \int_{\mathbb{R} \times \Sigma} \left(|\varphi_t|^2 - |\varphi_x|^2 - |\varphi_y|^2 \right) dt \, dx \, dy$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 φ solves (*) iff φ a critical point of S.

Leading order

$$\begin{split} \phi \times \Box \phi &= \phi \times \left(\phi_{tt} - \phi_{xx} - \phi_{yy} \right) = 0 \\ \Box \phi - \left(\phi \cdot \Box \phi \right) \phi &= 0 \quad (*) \end{split}$$

Nonlinear wave equation! Lorentz invariant!

• Variational formulation: action of field $\phi:\mathbb{R}\times\Sigma\to \mathit{S}^2$

$$S[\varphi] = \frac{1}{2} \int_{\mathbb{R} \times \Sigma} \left(|\varphi_t|^2 - |\varphi_x|^2 - |\varphi_y|^2 \right) dt \, dx \, dy$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 φ solves (*) iff φ a critical point of S.

• Physicists call this the $\mathbb{C}P^1$ model

 $\varphi_{tt} - \Delta \varphi - [\varphi \cdot (\varphi_{tt} - \Delta \varphi)] \varphi = 0$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

$$\varphi_{tt} - \Delta \varphi - [\varphi \cdot (\varphi_{tt} - \Delta \varphi)] \varphi = 0$$

Static solutions are critical points of potential energy

$$E = \frac{1}{2} \int_{\Sigma} |\varphi_x|^2 + |\varphi_y|^2$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$\varphi_{tt} - \Delta \varphi - [\varphi \cdot (\varphi_{tt} - \Delta \varphi)] \varphi = 0$$

Static solutions are critical points of potential energy

$$E = \frac{1}{2} \int_{\Sigma} |\varphi_x|^2 + |\varphi_y|^2$$

• Assume $\phi(\mathbf{x}) \to \phi_0$ fixed as $|\mathbf{x}| \to \infty$. Then ϕ extends to a cts map $\Sigma \cup \{\infty\} \cong S^2 \to S^2$

$$\varphi_{tt} - \Delta \varphi - [\varphi \cdot (\varphi_{tt} - \Delta \varphi)] \varphi = 0$$

• Static solutions are critical points of potential energy

$$E = \frac{1}{2} \int_{\Sigma} |\varphi_x|^2 + |\varphi_y|^2$$

- Assume $\phi(\mathbf{x}) \to \phi_0$ fixed as $|\mathbf{x}| \to \infty$. Then ϕ extends to a cts map $\Sigma \cup \{\infty\} \cong S^2 \to S^2$
- Fields fall into disjoint homotopy classes labelled by $n = \deg \phi \in \mathbb{Z}$. WLOG can assume $n \ge 0$
The Bogomol'nyi argument (Belavin, Polyakov, Lichnerowicz)

$$\varphi_{tt} - \Delta \varphi - [\varphi \cdot (\varphi_{tt} - \Delta \varphi)] \varphi = 0$$

Static solutions are critical points of potential energy

$$E = \frac{1}{2} \int_{\Sigma} |\varphi_x|^2 + |\varphi_y|^2$$

- Assume $\varphi(\mathbf{x}) \to \varphi_0$ fixed as $|\mathbf{x}| \to \infty$. Then φ extends to a cts map $\Sigma \cup \{\infty\} \cong S^2 \to S^2$
- Fields fall into disjoint homotopy classes labelled by n = deg φ ∈ ℤ. WLOG can assume n ≥ 0
- Topological lower energy bound:

$$0 \leq \frac{1}{2} \int_{\Sigma} |\phi_x + \phi \times \phi_y|^2 = E - \int_{\Sigma} \phi \cdot (\phi_x \times \phi_y) = E - 4\pi n$$

The Bogomol'nyi argument (Belavin, Polyakov, Lichnerowicz)

$$\varphi_{tt} - \Delta \varphi - [\varphi \cdot (\varphi_{tt} - \Delta \varphi)] \varphi = 0$$

Static solutions are critical points of potential energy

$$E = \frac{1}{2} \int_{\Sigma} |\varphi_x|^2 + |\varphi_y|^2$$

- Assume $\varphi(\mathbf{x}) \to \varphi_0$ fixed as $|\mathbf{x}| \to \infty$. Then φ extends to a cts map $\Sigma \cup \{\infty\} \cong S^2 \to S^2$
- Fields fall into disjoint homotopy classes labelled by n = deg φ ∈ ℤ. WLOG can assume n ≥ 0
- Topological lower energy bound:

$$0 \leq \frac{1}{2} \int_{\Sigma} |\phi_x + \phi \times \phi_y|^2 = E - \int_{\Sigma} \phi \cdot (\phi_x \times \phi_y) = E - 4\pi n$$

$$E \geq 4\pi n$$

$$E = 4\pi n \quad \Leftrightarrow \quad \phi_x + \phi \times \phi_y = 0 \quad \text{1st order PDE!}$$

$$\varphi_x + \varphi \times \varphi_y = 0 \quad [\Leftrightarrow \quad \varphi_y - \varphi \times \varphi_x = 0]$$

• In fact, it's the Cauchy Riemann condition!

 $\phi_x + \phi \times \phi_y = 0 \quad [\Leftrightarrow \quad \phi_y - \phi \times \phi_x = 0]$

- In fact, it's the Cauchy Riemann condition!
- S² is a **complex** manifold. Can turn each tangent space into a **complex** vector space of dimension 1.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\phi_x + \phi \times \phi_y = 0 \quad [\Leftrightarrow \quad \phi_y - \phi \times \phi_x = 0]$

- In fact, it's the Cauchy Riemann condition!
- S² is a complex manifold. Can turn each tangent space into a complex vector space of dimension 1. Need to define (a+ib)X for any X ∈ T_φS², a, b ∈ ℝ.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\phi_x + \phi \times \phi_y = 0 \quad [\Leftrightarrow \quad \phi_y - \phi \times \phi_x = 0]$

- In fact, it's the Cauchy Riemann condition!
- S² is a complex manifold. Can turn each tangent space into a complex vector space of dimension 1. Need to define (a + ib)X for any X ∈ T_φS², a, b ∈ ℝ. Suffices to define iX, i.e. need linear map

$$J: T_{\phi}S^2 \rightarrow T_{\phi}S^2$$
 s.t. $J^2 = -1$

Then (a+ib)X := aX + bJX.

 $\phi_x + \phi \times \phi_y = 0 \quad [\Leftrightarrow \quad \phi_y - \phi \times \phi_x = 0]$

- In fact, it's the Cauchy Riemann condition!
- S² is a complex manifold. Can turn each tangent space into a complex vector space of dimension 1. Need to define (a + ib)X for any X ∈ T_φS², a, b ∈ ℝ. Suffices to define iX, i.e. need linear map

$$J: T_{\phi}S^2 \rightarrow T_{\phi}S^2$$
 s.t. $J^2 = -1$

Then (a+ib)X := aX + bJX. $JX = -\phi \times X$ does the job.

 $\phi_x + \phi \times \phi_y = 0 \quad [\Leftrightarrow \quad \phi_y - \phi \times \phi_x = 0]$

- In fact, it's the Cauchy Riemann condition!
- S² is a complex manifold. Can turn each tangent space into a complex vector space of dimension 1. Need to define (a+ib)X for any X ∈ T_φS², a, b ∈ ℝ. Suffices to define iX, i.e. need linear map

$$J: T_{\varphi}S^2 \rightarrow T_{\varphi}S^2$$
 s.t. $J^2 = -1$

Then (a+ib)X := aX + bJX. $JX = -\phi \times X$ does the job.

• $\Sigma = \mathbb{R}^2 \cong \mathbb{C}$ is also a complex manifold. $J_{\Sigma}\partial_x = \partial_y, \qquad J_{\Sigma}\partial_y = -\partial_x$

 $\phi_x + \phi \times \phi_y = 0 \quad [\Leftrightarrow \quad \phi_y - \phi \times \phi_x = 0]$

- In fact, it's the Cauchy Riemann condition!
- S² is a complex manifold. Can turn each tangent space into a complex vector space of dimension 1. Need to define (a+ib)X for any X ∈ T_φS², a, b ∈ ℝ. Suffices to define iX, i.e. need linear map

$$J: T_{\phi}S^2 \rightarrow T_{\phi}S^2$$
 s.t. $J^2 = -1$

Then (a+ib)X := aX + bJX. $JX = -\phi \times X$ does the job.

- $\Sigma = \mathbb{R}^2 \cong \mathbb{C}$ is also a complex manifold. $J_{\Sigma}\partial_x = \partial_y, \qquad J_{\Sigma}\partial_y = -\partial_x$
- Bogomol'nyi equation equivalent to dφ ∘ J_Σ = J ∘ dφ that is, φ : Σ → S² is holomorphic

Moduli space

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

$$u(z) = \frac{a_0 + a_1 z + \dots + a_n z^n}{b_0 + b_1 z + \dots + b_n z^n}$$

• Boundary condition: $\varphi(\infty) = (0, 0, 1) \Rightarrow b_n = 0.$

$$u(z) = \frac{a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + z^n}{b_0 + b_1 z + \dots + b_{n-1} z^{n-1}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

$$u(z) = \frac{a_0 + a_1 z + \dots + a_n z^n}{b_0 + b_1 z + \dots + b_n z^n}$$

• Boundary condition: $\varphi(\infty) = (0, 0, 1) \Rightarrow b_n = 0.$

$$u(z) = \frac{a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + z^n}{b_0 + b_1 z + \dots + b_{n-1} z^{n-1}}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Moduli space $M_n = \operatorname{Rat}_n^* \subset \mathbb{C}^{2n}$, open

$$u(z) = \frac{a_0 + a_1 z + \dots + a_n z^n}{b_0 + b_1 z + \dots + b_n z^n}$$

• Boundary condition: $\varphi(\infty) = (0, 0, 1) \Rightarrow b_n = 0.$

$$u(z) = \frac{a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + z^n}{b_0 + b_1 z + \dots + b_{n-1} z^{n-1}}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Moduli space $M_n = \operatorname{Rat}_n^* \subset \mathbb{C}^{2n}$, open

•
$$M_1 = \mathbb{C} \times \mathbb{C}^{\times}$$

 $u(z) = \frac{a_0 + z}{b_0}$

• Position $-a_0$, width $|b_0|$, orientation $arg(b_0)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• M_2 , complicated manifold $\dim_{\mathbb{C}} M_2 = 4$.

- M_2 , complicated manifold $\dim_{\mathbb{C}} M_2 = 4$.
- Expect energy to localize around zeros of *u*. OK if well-separated

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Moduli space

- M_2 , complicated manifold $\dim_{\mathbb{C}} M_2 = 4$.
- Expect energy to localize around zeros of *u*. OK if well-separated
- Lose identity when close, e.g. $u = z^2$

$$S = \int dt \left\{ \frac{1}{2} \left(\int_{\Sigma} |\varphi_t|^2 \right) - E(\varphi) \right\}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$S = \int dt \left\{ \frac{1}{2} \left(\int_{\Sigma} |\varphi_t|^2 \right) - E(\varphi) \right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• Evolution conserves $E_{tot} = E(\varphi) + \frac{1}{2} \int_{\Sigma} |\varphi_t|^2$

$$S = \int dt \left\{ \frac{1}{2} \left(\int_{\Sigma} |\phi_t|^2 \right) - E(\phi) \right\}$$

- Evolution conserves $E_{tot} = E(\varphi) + \frac{1}{2} \int_{\Sigma} |\varphi_t|^2$
- Constrain $\varphi(t)$ to M_n

$$S|_{TM_n} = \int dt \{ \frac{1}{2} \gamma(\dot{\phi}, \dot{\phi}) - 4\pi n \}$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

$$S = \int dt \left\{ \frac{1}{2} \left(\int_{\Sigma} |\phi_t|^2 \right) - E(\phi) \right\}$$

- Evolution conserves $E_{tot} = E(\varphi) + \frac{1}{2} \int_{\Sigma} |\varphi_t|^2$
- Constrain $\varphi(t)$ to M_n

$$S|_{TM_n} = \int dt \{ \frac{1}{2} \gamma(\dot{\varphi}, \dot{\varphi}) - 4\pi n \}$$

Geodesic motion on (M_n, γ) where $\gamma = L^2$ metric.

L^2 metric

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

• $X \in T_{\phi}M_n$ is a section of $\phi^{-1}TS^2$

L² metric

• $X \in T_{\phi}M_n$ is a section of $\phi^{-1}TS^2$ Concretely, a map $\Sigma \to \mathbb{R}^3$ s.t. $X(\mathbf{x}) \cdot \phi(\mathbf{x}) = 0$ everywhere. Then

$$\gamma(X,Y)=\int_{\Sigma}X\cdot Y.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

L² metric

• $X \in T_{\phi}M_n$ is a section of $\phi^{-1}TS^2$ Concretely, a map $\Sigma \to \mathbb{R}^3$ s.t. $X(\mathbf{x}) \cdot \phi(\mathbf{x}) = 0$ everywhere. Then

$$\gamma(X,Y)=\int_{\Sigma}X\cdot Y.$$

So

$$\gamma(\dot{\phi},\dot{\phi}) = \int_{\Sigma} |\phi_t|^2$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

L² metric

• $X \in T_{\phi}M_n$ is a section of $\phi^{-1}TS^2$ Concretely, a map $\Sigma \to \mathbb{R}^3$ s.t. $X(\mathbf{x}) \cdot \phi(\mathbf{x}) = 0$ everywhere. Then

$$\gamma(X,Y)=\int_{\Sigma}X\cdot Y.$$

So

$$\gamma(\dot{\phi},\dot{\phi}) = \int_{\Sigma} |\phi_t|^2$$

 Geodesic motion is constant speed motion along "straightest possible" curve

$$u(z) = \frac{z^2 + a_1 z + a_0}{b_1 z + b_0}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

In general, geodesic flow very complicated

$$u(z) = \frac{z^2 + a_1 z + a_0}{b_1 z + b_0}$$

- In general, geodesic flow very complicated
- Trick: reduce dimension by finding totally geodesic submanifolds

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$u(z) = \frac{z^2 + a_1 z + a_0}{b_1 z + b_0}$$

- In general, geodesic flow very complicated
- Trick: reduce dimension by finding totally geodesic submanifolds
- Discrete group of isometries of M_2 , $\mathbb{Z}_2 \times \mathbb{Z}_2$, generated by

$$u(z)\mapsto u(-z), \qquad u(z)\mapsto \overline{u(\overline{z})}$$

$$u(z) = \frac{z^2 + a_1 z + a_0}{b_1 z + b_0}$$

- In general, geodesic flow very complicated
- Trick: reduce dimension by finding totally geodesic submanifolds
- Discrete group of isometries of M_2 , $\mathbb{Z}_2 \times \mathbb{Z}_2$, generated by

$$u(z)\mapsto u(-z), \qquad u(z)\mapsto \overline{u(\overline{z})}$$

• Fixed point set $\widetilde{M}_2 \subset M_2$

 $u(z) = \lambda(z^2 + \mu), \qquad \lambda \in \mathbb{R} \setminus \{0\}, \mu \in \mathbb{R}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$u(z) = \frac{z^2 + a_1 z + a_0}{b_1 z + b_0}$$

- In general, geodesic flow very complicated
- Trick: reduce dimension by finding totally geodesic submanifolds
- Discrete group of isometries of M_2 , $\mathbb{Z}_2 \times \mathbb{Z}_2$, generated by

$$u(z)\mapsto u(-z), \qquad u(z)\mapsto \overline{u(\overline{z})}$$

• Fixed point set $\widetilde{M}_2 \subset M_2$

$$u(z) = \lambda(z^2 + \mu), \qquad \lambda \in \mathbb{R} \setminus \{0\}, \mu \in \mathbb{R}$$

Lumps of equal width $\sim \lambda^{-\frac{1}{2}}$ located where $z^2 = -\mu$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

| ≧ ▶ 三 のへの

• $M_n \subset \mathbb{C}^{2n}$ is itself a **complex** manifold, has a $J : T_{\phi}M_n \to T_{\phi}M_n$, $J^2 = -1$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

- $M_n \subset \mathbb{C}^{2n}$ is itself a **complex** manifold, has a $J : T_{\phi}M_n \to T_{\phi}M_n$, $J^2 = -1$
- Two natural structures on each tangent space, *J* and γ. Are they compatible?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

- $M_n \subset \mathbb{C}^{2n}$ is itself a **complex** manifold, has a $J : T_{\phi}M_n \to T_{\phi}M_n$, $J^2 = -1$
- Two natural structures on each tangent space, *J* and γ. Are they compatible?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Yes: $\gamma(JX, JY) = \gamma(X, Y)$ for all $X, Y \in T_{\phi}M_n$ γ is Hermitian

- $M_n \subset \mathbb{C}^{2n}$ is itself a **complex** manifold, has a $J : T_{\phi}M_n \to T_{\phi}M_n$, $J^2 = -1$
- Two natural structures on each tangent space, *J* and γ. Are they compatible?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Yes: $\gamma(JX, JY) = \gamma(X, Y)$ for all $X, Y \in T_{\phi}M_n$ γ is Hermitian
- Even better, $\nabla J = 0$ (*J* invariant under parallel transport) γ is Kähler

- $M_n \subset \mathbb{C}^{2n}$ is itself a **complex** manifold, has a $J : T_{\phi}M_n \to T_{\phi}M_n$, $J^2 = -1$
- Two natural structures on each tangent space, *J* and γ. Are they compatible?
- Yes: $\gamma(JX, JY) = \gamma(X, Y)$ for all $X, Y \in T_{\phi}M_n$ γ is Hermitian
- Even better, $\nabla J = 0$ (*J* invariant under parallel transport) γ is Kähler
- Alternative characterization: define Kähler form

 $\omega(X,Y) = \gamma(JX,Y)$

- $M_n \subset \mathbb{C}^{2n}$ is itself a **complex** manifold, has a $J : T_{\phi}M_n \to T_{\phi}M_n$, $J^2 = -1$
- Two natural structures on each tangent space, *J* and γ. Are they compatible?
- Yes: $\gamma(JX, JY) = \gamma(X, Y)$ for all $X, Y \in T_{\phi}M_n$ γ is Hermitian
- Even better, $\nabla J = 0$ (*J* invariant under parallel transport) γ is Kähler
- Alternative characterization: define K\u00e4hler form

 $\omega(X,Y) = \gamma(JX,Y)$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hermitian $\Rightarrow \omega(Y, X) = -\omega(X, Y)$

- $M_n \subset \mathbb{C}^{2n}$ is itself a **complex** manifold, has a $J : T_{\phi}M_n \to T_{\phi}M_n$, $J^2 = -1$
- Two natural structures on each tangent space, *J* and γ. Are they compatible?
- Yes: $\gamma(JX, JY) = \gamma(X, Y)$ for all $X, Y \in T_{\phi}M_n$ γ is Hermitian
- Even better, $\nabla J = 0$ (*J* invariant under parallel transport) γ is Kähler
- Alternative characterization: define Kähler form

 $\omega(X,Y) = \gamma(JX,Y)$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hermitian $\Rightarrow \omega(Y, X) = -\omega(X, Y)$ Kähler $\Rightarrow d\omega = 0$

- $M_n \subset \mathbb{C}^{2n}$ is itself a **complex** manifold, has a $J : T_{\phi}M_n \to T_{\phi}M_n$, $J^2 = -1$
- Two natural structures on each tangent space, *J* and γ. Are they compatible?
- Yes: $\gamma(JX, JY) = \gamma(X, Y)$ for all $X, Y \in T_{\phi}M_n$ γ is Hermitian
- Even better, $\nabla J = 0$ (*J* invariant under parallel transport) γ is Kähler
- Alternative characterization: define K\u00e4hler form

 $\omega(X,Y) = \gamma(JX,Y)$

Hermitian $\Rightarrow \omega(Y, X) = -\omega(X, Y)$ Kähler $\Rightarrow d\omega = 0$

• Consequence: centre of mass motion decouples, $M_n = \mathbb{C} \times M_n^{\text{red}}$

$$\gamma = 4\pi n \gamma_{\rm Euc} + \gamma_{\rm red}$$

• Integer topological charge n

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

- Integer topological charge n
- Topological energy bound E ≥ E₀n Attained by solutions of a first order nonlinear PDE system, "holomorphic"

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Integer topological charge n
- Topological energy bound E ≥ E₀n
 Attained by solutions of a first order nonlinear PDE system,
 "holomorphic"
- Moduli space of energy minimizers M_n is a finite-dimensional complex manifold, with a natural Riemannian metric

- Integer topological charge n
- Topological energy bound E ≥ E₀n
 Attained by solutions of a first order nonlinear PDE system,
 "holomorphic"
- Moduli space of energy minimizers M_n is a finite-dimensional complex manifold, with a natural Riemannian metric

Metric is Kähler

- Integer topological charge n
- Topological energy bound E ≥ E₀n Attained by solutions of a first order nonlinear PDE system, "holomorphic"
- Moduli space of energy minimizers M_n is a finite-dimensional complex manifold, with a natural Riemannian metric

- Metric is Kähler
- Geodesics in M_n ↔ slow n-soliton trajectories

- Integer topological charge n
- Topological energy bound E ≥ E₀n Attained by solutions of a first order nonlinear PDE system, "holomorphic"
- Moduli space of energy minimizers M_n is a finite-dimensional complex manifold, with a natural Riemannian metric

- Metric is Kähler
- Geodesics in M_n ↔ slow n-soliton trajectories
- 90° head-on scattering

• Obvious generalization:

$$\phi: \Sigma \rightarrow N, \qquad E = rac{1}{2} \int_{\Sigma} |\mathrm{d} \phi|^2$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

 Σ , *N* Riemannian mfds (harmonic map problem)

• Obvious generalization:

$$\phi: \Sigma \to \textit{N}, \qquad \textit{E} = \frac{1}{2} \int_{\Sigma} |d\phi|^2$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 Σ , *N* Riemannian mfds (harmonic map problem)

• Antiferromagnets: $\Sigma = \mathbb{C}$, $N = S^2$

• Obvious generalization:

$$\phi:\Sigma\to \textit{N},\qquad \textit{E}=\frac{1}{2}\int_{\Sigma}|\mathrm{d}\phi|^2$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Σ , *N* Riemannian mfds (harmonic map problem)

- Antiferromagnets: $\Sigma = \mathbb{C}$, $N = S^2$
- Inhomogeneous antiferromagnets: $\Sigma = \Sigma^2$, $N = S^2$

Obvious generalization:

$$\phi: \Sigma \to \textit{N}, \qquad \textit{E} = \frac{1}{2} \int_{\Sigma} |\mathrm{d}\phi|^2$$

 Σ , *N* Riemannian mfds (harmonic map problem)

- Antiferromagnets: $\Sigma = \mathbb{C}$, $N = S^2$
- Inhomogeneous antiferromagnets: $\Sigma = \Sigma^2$, $N = S^2$
- Σ , *N* Kähler, keeps key features: $n = [\phi^* \omega]$ $M_n = \text{hol}_n(\Sigma, N)$, Kähler

- ϕ a section of a complex vector bundle W over Σ
- ∇ = unitary connexion on *W*, curvature *F*

$$E = \frac{1}{2} \int_{\Sigma} |\nabla \phi|^2 + |F|^2 + U(\phi)$$

$$n = \text{Chern class of } W$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- ϕ a section of a complex vector bundle W over Σ
- ∇ = unitary connexion on W, curvature F

$$E = \frac{1}{2} \int_{\Sigma} |\nabla \phi|^2 + |F|^2 + U(\phi)$$

$$n = \text{Chern class of } W$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• $E \ge E_0 n$, equality iff (ϕ, ∇) satisfy "self-duality" condition

- ϕ a section of a complex vector bundle W over Σ
- ∇ = unitary connexion on W, curvature F

$$E = \frac{1}{2} \int_{\Sigma} |\nabla \phi|^2 + |F|^2 + U(\phi)$$

$$n = \text{Chern class of } W$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- $E \geq E_0 n$, equality iff (ϕ, ∇) satisfy "self-duality" condition
- Vortices: Σ^2 , W = line bundle

•
$$n = c_1(\Sigma) = \int_{\Sigma} F$$

• $M_n = S_n(\Sigma)$, Kähler

- ϕ a section of a complex vector bundle W over Σ
- ∇ = unitary connexion on W, curvature F

$$E = \frac{1}{2} \int_{\Sigma} |\nabla \phi|^2 + |F|^2 + U(\phi)$$

$$n = \text{Chern class of } W$$

- $E \geq E_0 n$, equality iff (ϕ, ∇) satisfy "self-duality" condition
- Vortices: Σ^2 , W = line bundle

•
$$n = c_1(\Sigma) = \int_{\Sigma} F$$

- $M_n = S_n(\Sigma)$, Kähler
- Monopoles: $\Sigma^3 = \mathbb{R}^3$, $W = \mathbb{C}^2$ bundle
 - n = subtle
 - M_n = Rat^{*}_n, hyperkähler (Kähler w.r.t. three different complex structures *I*, *J*, *K*, satisfying quaternion algebra)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Instantons: $\Sigma^4 = S^4$, \mathbb{R}^4 , $W = C^2$ bundle, no ϕ ,

•
$$n = c_2(W) = \int_{\Sigma} \operatorname{tr}(F \wedge F)$$

• $M_n = \{\text{self-dual connexions}\}$ (meaning *F = F), also hyperkähler

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Instantons: $\Sigma^4 = S^4$, \mathbb{R}^4 , $W = C^2$ bundle, no ϕ ,

•
$$n = c_2(W) = \int_{\Sigma} \operatorname{tr}(F \wedge F)$$

• $M_n = \{\text{self-dual connexions}\}$ (meaning *F = F), also hyperkähler

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Calorons:
$$\Sigma^4 = \mathbf{S}^1 \times \mathbb{R}^3, T^2 \times \mathbb{R}^2, \dots$$

• Instantons: $\Sigma^4 = S^4$, \mathbb{R}^4 , $W = C^2$ bundle, no φ ,

•
$$n = c_2(W) = \int_{\Sigma} \operatorname{tr}(F \wedge F)$$

• $M_n = \{ \text{self-dual connexions} \}$ (meaning *F = F), also hyperkähler

- Calorons: $\Sigma^4 = \mathbf{S}^1 \times \mathbb{R}^3, T^2 \times \mathbb{R}^2, \dots$
- Monopoles = translation invariant instantons
- Vortices = SO(3) invariant instantons

- Volume, diameter of M_n?
- Curvature properties?
- Periodic geodesics?
- Ergodicity?
- Symplectic geometry of (M_n, ω)?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Open questions: Quantization

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Open questions: Quantization

• Wavefunction $\Psi : \mathbb{R} \times M_n \to \mathbb{C}$

$$i\frac{\partial\Psi}{\partial t} = \frac{1}{2}\Delta\Psi$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Spectral geometry of M_n

Open questions: Validity

Geodesic approximation based on physical intuition. Can we prove it works, i.e. rigorously bound errors?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Open questions: Validity

- Geodesic approximation based on physical intuition. Can we prove it works, i.e. rigorously bound errors?
- Proto-theorem: consider one-parameter family of IVPs for field equation with initial data φ(0) = φ₀ ∈ M_n, φ_t(0) = εφ₁ ∈ T_{φ₀}M_n, ε > 0. Define time-rescaled field

 $\varphi_{\varepsilon}(\tau) = \varphi(\tau/\varepsilon).$

Then there exists T > 0 such that $\varphi_{\varepsilon} : [0, T] \times \Sigma \to N$ converges uniformly, as $\varepsilon \to 0$, to $\psi(\tau)$, the geodesic in M_n with initial data (φ_0, φ_1) .

- コン・4回シュービン・4回シューレー

Open questions: Validity

- Geodesic approximation based on physical intuition. Can we prove it works, i.e. rigorously bound errors?
- Proto-theorem: consider one-parameter family of IVPs for field equation with initial data φ(0) = φ₀ ∈ M_n, φ_t(0) = εφ₁ ∈ T_{φ₀}M_n, ε > 0. Define time-rescaled field

 $\varphi_{\varepsilon}(\tau) = \varphi(\tau/\varepsilon).$

Then there exists T > 0 such that $\varphi_{\varepsilon} : [0, T] \times \Sigma \to N$ converges uniformly, as $\varepsilon \to 0$, to $\psi(\tau)$, the geodesic in M_n with initial data (φ_0, φ_1) .

• Proved for vortices, monopoles (Stuart), $\mathbb{C}P^1$ lumps on T^2 (JMS)

 Geodesic approximation provides a beautiful link between geometry and physics

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

- Geodesic approximation provides a beautiful link between geometry and physics
- Contributions from diverse sources: Atiyah, Hitchin +...,
 Gibbons, Manton +..., Ward +..., Witten, Sen

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Geodesic approximation provides a beautiful link between geometry and physics
- Contributions from diverse sources: Atiyah, Hitchin +···, Gibbons, Manton +···, Ward +···, Witten, Sen
- Mixes Riemannian, symplectic, algebraic geometry, geometric analysis, particle physics

- Geodesic approximation provides a beautiful link between geometry and physics
- Contributions from diverse sources: Atiyah, Hitchin +···, Gibbons, Manton +···, Ward +···, Witten, Sen
- Mixes Riemannian, symplectic, algebraic geometry, geometric analysis, particle physics

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lots of interesting, accessible problems

- Geodesic approximation provides a beautiful link between geometry and physics
- Contributions from diverse sources: Atiyah, Hitchin +···, Gibbons, Manton +···, Ward +···, Witten, Sen
- Mixes Riemannian, symplectic, algebraic geometry, geometric analysis, particle physics
- Lots of interesting, accessible problems
- Further reading: "Topological Solitons" Manton and Sutcliffe