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What are topological solitons?

Smooth, spatially localized solutions of nonlinear relativistic
classical field theories

@ Stable; in fact topologically stable
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e Have relativistic kinematics: E(v) =

@ Have antisolitons

Rather like classical point particles. In particular, fields away
from soliton core often look like fields induced in linear field
theories by point particle sources.

Idea: forces between widely separated solitons should be the same
as forces between appropriate point particles interacting via linear
field theory. (Originally applied by Manton to BPS monopoles.)



Sine-Gordon Kinks
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Linearized model

@ Linearize about vacuum: ¢ = 2nm + ¢
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o Klein-Gordon theory
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o General static soln: ¢(x) = c1e* + e ™™



Linearized model

e Add sources: L= % Lot — %1/12 + K1)
00"+ =k
@ Scalar monopole k(x) = gd(x) induces ¥(x) = 9 e Ix

2

¥
Y2

T :



Linearized model

@ Interaction between a pair of sources k1(x, t), ka(x, t)
inducing fields 11 (x, t), ¥2(x, t):
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Linearized model

@ Two scalar monopoles: k1 = q1d(x — x1), k2 = g20(x — x2)
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@ Interaction potential
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Like charges attract, unlike repel!
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@ Compare with kink asymptotics:

4e— I x <0
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@ Looks like a monopole of charge g = 8 for x < 0, charge
g = —8 for x > 0. Dipole?

e Yes! Dipole source x(x) = md’(x) with m = 8 induces field
dm
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Kink interactions

@ Kink-Kink interaction at long range should be the same as
interaction between a pair of equal dipoles (kink-antikink:
opposite dipoles)

e Interaction Lagrangian k1 = m1d'(x — x1), ko = mpd’(x — x2):
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@ Interaction potential
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Kink interactions

@ Kink-Kink: my = mp =8

Vit = 32e~ Pl repulsive

o Kink-Antikink: my =8, my, = —8

Vint = —32e el attractive

@ Turns out to be correct! Perring and Skyrme (1962),
Rajaraman (1977)



Vortices in (2+1)D

@ Abelian Higgs model: D,, = 0,, + iA,, F., = 0,A, — 0,A,
1 i I 2)2
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o Gauge invariant: ¢ — e\, A= Ay — Ol

@ Magnetic flux quantization:
finite energy = |¢p| — 1, D¢ — 0 as r — 0. So at large r
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Hence, by Stokes,
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where n = winding of ¢ around unit circle.



@ Vortex ansatz:
¢:U(r)ei9; AOZO? A= 7(_)/7)()

o(r), a(r) profile functions, both — 1 as r — oc.
Field equations = coupled nonlinear ODEs for o, a.

@ Exact solutions not known. Numerics:
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Gauge potential




Vortex asymptotics

e Asymptotics: for p < 2,
o(r) ~ 1+ =LKo(ur)
27
m
a(r) ~ 1- ErK(’)(r)

where Ko = modified Bessel function of the second kind, g, m
are unknown constants.

e Note Kp(r) ~ \/ge*’



Linearized model

@ Try same trick: replicate far-field of vortex in linear theory by
introducing appropriate point sources.

@ Linearize AHM: choose real gauge, ¢ =1+ 1,
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o Field equations
(0u0" + p?)p=r, (90" + 1)A"=j"

Klein-Gordon-Proca theory: 1) scalar boson (Higgs) of mass
w, A" vector boson (photon) of mass 1.



e Unwound vortex (after gauge transform ¢ — e~?¢)
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@ Green's function for Helmholtz equation:

(—V2 + 1) Ko(pur) = 2w6(x)

@ So asymptotic vortex fields induced by

k = qd(x) scalar monopole, charge ¢

j = —mkx Vi(x) magnetic dipole of moment mk

Composite point source, “point vortex”



Point vortices

e m < 0: clockwise current loop!

o At =1, g = m. Not a coincidence!



Point vortex interactions

@ Interaction Lagrangian

Fine = / {raye) — AR} = Ly + La
R2

@ Two point vortices at rest at 'y, z
q 2
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@ Interaction potential
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Vortex interaction potential

1
Vit = g[m2Ko(5) — q?Ko(us)]

@ 1 < 1 attractive - type |
1 > 1 repulsive - type Il
1 =1 cancel, Vipy = 0. Not a coincidence!

@ Cf constrained minimization:




Vortex-antivortex interaction

Obtain antivortex (winding n = —1) by ¢ — ¢, A— —A
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Similar calculation

1
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Always attractive



Vortex scattering

@ Vortex scattering

@ Simple model:

L= MY + 12P) — Viu(ly — )



Vortex scattering

e Cf Myers, Rebbi, Strilka (1992)
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Critical coupling

@ 1 = 1: Higgs and photon have same mass, g = m, so Viy; =0
[Aside: David Tong argues that g = —2#8%]
For static (point) vortices, scalar attraction exactly balances
magnetic repulsion

@ Vortex scattering trivial? Certainly not.
@ Scalar attraction mediated by scalar field v, magnetic
repulsion mediated by vector field A

Different tranformation properties under Lorentz boosts
Do not balance for (point) vortices in relative motion

o Can compute Ljy, for point vortices moving along arbitrary
trajectories y(t) and z(t), as an expansion in time derivatives



Moving point vortex

Point vortex moving along y(t) at constant velocity has

o n(x,t) = (1 515 ) olx - y(2)

@ |-
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o jf=qgkxy - V,-kxV+(kxy)y- V)i
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Interaction Lagrangian
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@ Need fields induced by moving point vortex 2

@ If linear theory were massless, would use retarded potentials
(standard problem)

@ Use formal temporal Fourier tranform trick, expansion in time
derivatives

@ Actually, need to work up to terms linear in y, z
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Two vortex dynamics at critical coupling

L= T3+ 122) = L ko(ly — 2])ly — 2P
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@ Geodesic motion on R? x R? wrt to non-Euclidean metric
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Asymptotic to the Samols metric

o Critical vortex scattering




Concluding remarks

@ Point soliton approx. now a standard tool for analyzing long
range intersoliton forces

e Formal, but often confirmed by (more or less) rigorous analysis
e BPS monopoles: Manton (1985), Bielawski (1998)

e Static vortices: Speight (1997); moving critical vortices:
Manton and Speight (2003)

@ Skyrmions and baby Skyrmions: Schroers (1993)

@ An aid to numerics e.g. Faddeev-Hopf solitons: Ward (2000);
Skyrme sphalerons: Krusch and Sutcliffe (2004)



