Solitons and point particles

Martin Speight University of Leeds

July 28, 2009

What are topological solitons?

- Smooth, spatially localized solutions of nonlinear relativistic classical field theories
- Stable; in fact topologically stable
- Have relativistic kinematics: $E(v) = \frac{E(0)}{\sqrt{1-v^2}}$
- Have antisolitons

Rather like classical point particles. In particular, fields away from soliton core often look like fields induced in linear field theories by point particle sources.

Idea: forces between widely separated solitons should be the same as forces between appropriate point particles interacting via linear field theory. (Originally applied by Manton to BPS monopoles.)

Sine-Gordon Kinks

$$\mathcal{L}=rac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi-\left(1-\cos\phi
ight)$$
 $\partial_{\mu}\partial^{\mu}\phi+\sin\phi=0$

- Vacua: $\phi(x) = 2n\pi$
- Kink: $\phi(x) = 4 \tan^{-1} e^{x-x_0} \sim \begin{cases} 4e^{x-x_0} & x \to -\infty \\ 2\pi 4e^{-(x-x_0)} & x \to \infty \end{cases}$

• Linearize about vacuum: $\phi = 2n\pi + \psi$

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \psi \partial^{\mu} \psi - \frac{1}{2} \psi^2 + \cdots$$

Klein-Gordon theory

$$\partial_{\mu}\partial^{\mu}\psi + \psi = 0$$

• General static soln: $\psi(x) = c_1 e^x + c_2 e^{-x}$

• Add sources:

$$\mathcal{L} = rac{1}{2}\partial_{\mu}\psi\partial^{\mu}\psi - rac{1}{2}\psi^{2} + \kappa\psi$$
 $\partial_{\mu}\partial^{\mu}\psi + \psi = \kappa$

• Scalar monopole $\kappa(x) = q\delta(x)$ induces $\psi(x) = \frac{q}{2}e^{-|x|}$

• Interaction between a pair of sources $\kappa_1(x,t)$, $\kappa_2(x,t)$ inducing fields $\psi_1(x,t)$, $\psi_2(x,t)$:

$$S = \int \{\frac{1}{2}\partial_{\mu}(\psi_{1} + \psi_{2})\partial^{\mu}(\psi_{1} + \psi_{2}) - \frac{1}{2}(\psi_{1} + \psi_{2})^{2} + (\kappa_{1} + \kappa_{2})(\psi_{1} + \psi_{2})\}dt dx$$

$$= S_{1} + S_{2} + \int \{\partial_{\mu}\psi_{1}\partial^{\mu}\psi_{2} - \psi_{1}\psi_{2} + \kappa_{1}\psi_{2} + \kappa_{2}\psi_{1}\} dt dx$$

$$= S_{1} + S_{2} + \int \{\psi_{1}(-\partial_{\mu}\partial^{\mu}\psi_{2} - \psi_{2} + \kappa_{2}) + \kappa_{1}\psi_{2}\} dt dx$$

$$= S_{1} + S_{2} + \int \kappa_{1}\psi_{2} dt dx$$

$$L_{int} = \int \kappa_{1}\psi_{2} dx$$

• Two scalar monopoles: $\kappa_1 = q_1 \delta(x - x_1), \kappa_2 = q_2 \delta(x - x_2)$

$$L_{\text{int}} = \int_{-\infty}^{\infty} q_1 \delta(x - x_1) \frac{q_2}{2} e^{-|x - x_2|} dx = \frac{1}{2} q_1 q_2 e^{-|x_1 - x_2|}$$

Interaction potential

$$V_{
m int} = -L_{
m int} = -rac{1}{2}q_1q_2e^{-|x_1-x_2|}$$

Like charges attract, unlike repel!

"Point kinks"

Compare with kink asymptotics:

$$\psi_{\mathcal{K}}(x) \sim \left\{ egin{array}{ll} 4e^{-|x|} & x < 0 \ -4e^{-|x|} & x > 0 \end{array}
ight.$$

- Looks like a monopole of charge q=8 for x<0, charge q=-8 for x>0. Dipole?
- Yes! Dipole source $\kappa(x) = m\delta'(x)$ with m = 8 induces field

$$\psi(x) = \frac{d}{dx} \frac{m}{2} e^{-|x|} = \psi_{K}(x)$$

Kink interactions

- Kink-Kink interaction at long range should be the same as interaction between a pair of equal dipoles (kink-antikink: opposite dipoles)
- Interaction Lagrangian $\kappa_1 = m_1 \delta'(x x_1), \ \kappa_2 = m_2 \delta'(x x_2)$:

$$L_{\text{int}} = \int_{-\infty}^{\infty} m_1 \delta'(x - x_1) \psi_2 \, dx = -m_1 \left. \frac{d\psi_2}{dx} \right|_{x = x_1}$$
$$= -\frac{1}{2} m_1 m_2 e^{-|x_1 - x_2|}$$

Interaction potential

$$V_{\rm int} = \frac{1}{2} m_1 m_2 e^{-|x_1 - x_2|}$$

Kink interactions

• Kink-Kink: $m_1 = m_2 = 8$

$$V_{\rm int} = 32e^{-|x_1-x_2|}$$
 repulsive

• Kink-Antikink: $m_1 = 8$, $m_2 = -8$

$$V_{\rm int} = -32e^{-|x_1-x_2|}$$
 attractive

Turns out to be correct! Perring and Skyrme (1962),
 Rajaraman (1977)

Vortices in (2+1)D

• Abelian Higgs model: $D_{\mu}=\partial_{\mu}+iA_{\mu},\;F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}$

$$\mathcal{L} = \frac{1}{2} D_{\mu} \phi \overline{D^{\mu} \phi} - \frac{1}{4} F_{\mu \nu} F^{\mu \nu} - \frac{\mu^2}{8} (1 - |\phi|^2)^2$$

- Gauge invariant: $\phi \mapsto e^{i\Lambda} \phi$, $A_{\mu} \mapsto A_{\mu} \partial_{\mu} \Lambda$
- Magnetic flux quantization: finite energy $\Rightarrow |\phi| \to 1$, $\mathbf{D}\phi \to 0$ as $r \to 0$. So at large r

$$\phi \sim \mathrm{e}^{i\chi(heta)}, \qquad \mathbf{A} \sim -irac{
abla \phi}{\phi} \sim
abla \chi(heta)$$

Hence, by Stokes,

$$\int_{\mathbb{R}^2} B = \int_{S^1} \mathbf{A} \cdot d\ell = 2\pi (\chi(2\pi) - \chi(0)) = 2\pi n$$

where $n = \text{winding of } \phi$ around unit circle.

Vortex ansatz:

$$\phi = \sigma(r)e^{i\theta};$$
 $A^0 = 0,$ $\mathbf{A} = \frac{a(r)}{r^2}(-y,x)$

 $\sigma(r)$, a(r) profile functions, both $\to 1$ as $r \to \infty$. Field equations \Rightarrow coupled nonlinear ODEs for σ , a.

• Exact solutions not known. Numerics:

Vortex asymptotics

• Asymptotics: for $\mu \leq 2$,

$$\sigma(r) \sim 1 + \frac{q}{2\pi} K_0(\mu r)$$

 $a(r) \sim 1 - \frac{m}{2\pi} r K'_0(r)$

where K_0 = modified Bessel function of the second kind, q, m are unknown constants.

• Note $K_0(r) \sim \sqrt{\frac{\pi}{2r}}e^{-r}$

- Try same trick: replicate far-field of vortex in linear theory by introducing appropriate point sources.
- Linearize AHM: choose real gauge, $\phi = 1 + \psi$,

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \psi \partial^{\mu} \psi - \frac{\mu^2}{2} \psi^2 - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} A_{\mu} A^{\mu} + \kappa \psi - j_{\mu} A^{\mu}$$

• Field equations

$$(\partial_{\mu}\partial^{\mu} + \mu^{2})\psi = \kappa, \qquad (\partial_{\mu}\partial^{\mu} + 1)A^{\nu} = j^{\nu}$$

Klein-Gordon-Proca theory: ψ scalar boson (Higgs) of mass μ , A^{μ} vector boson (photon) of mass 1.

Point vortices

• Unwound vortex (after gauge transform $\phi \mapsto e^{-i\theta}\phi$)

$$\psi = rac{q}{2\pi} K_0(\mu r), \qquad \mathbf{A} = -rac{m}{2\pi} \mathbf{k} imes
abla K_0(r)$$

• Green's function for Helmholtz equation:

$$(-\nabla^2 + \mu^2)K_0(\mu r) = 2\pi\delta(\mathbf{x})$$

So asymptotic vortex fields induced by

$$\kappa = q\delta(\mathbf{x})$$
 scalar monopole, charge q $\mathbf{j} = -m\mathbf{k} \times \nabla \delta(\mathbf{x})$ magnetic dipole of moment $m\mathbf{k}$

Composite point source, "point vortex"

Point vortices

- m < 0: clockwise current loop!
- At $\mu = 1$, q = m. Not a coincidence!

Point vortex interactions

Interaction Lagrangian

$$L_{\text{int}} = \int_{\mathbb{R}^2} \{ \kappa_{(1)} \psi_{(2)} - j^{\mu}_{(1)} A^{(2)}_{\mu} \} = L_{\psi} + L_{\mathcal{A}}$$

• Two point vortices at rest at y, z

$$L_{\psi} = \int q\delta(\mathbf{x} - \mathbf{y}) \frac{q}{2\pi} K_0(\mu | \mathbf{x} - \mathbf{z}|) d^2 \mathbf{x} = \frac{q^2}{2\pi} K_0(\mu | \mathbf{y} - \mathbf{z}|)$$

$$L_A = \int [-m\mathbf{k} \times \nabla \delta(\mathbf{x} - \mathbf{y})] \cdot [-\frac{m}{2\pi} \mathbf{k} \times \nabla K_0(|\mathbf{x} - \mathbf{z}|)] d^2 \mathbf{x}$$

$$= -\frac{m^2}{2\pi} \nabla_y^2 K_0(|\mathbf{y} - \mathbf{z}|) = -\frac{m^2}{2\pi} K_0(|\mathbf{y} - \mathbf{z}|)$$

Interaction potential

$$V_{\mathrm{int}} = rac{1}{2\pi}[m^2 \mathcal{K}_0(|\mathbf{y}-\mathbf{z}|) - q^2 \mathcal{K}_0(\mu|\mathbf{y}-\mathbf{z}|)]$$

Vortex interaction potential

$$V_{
m int} = rac{1}{2\pi} [m^2 K_0(s) - q^2 K_0(\mu s)]$$

- $\mu < 1$ attractive type I $\mu > 1$ repulsive - type II $\mu = 1$ cancel, $V_{\rm int} = 0$. Not a coincidence!
- Cf constrained minimization:

Vortex-antivortex interaction

- Obtain antivortex (winding n=-1) by $\phi\mapsto \overline{\phi}$, $\mathbf{A}\mapsto -\mathbf{A}$
- $\bullet \ \bar{q} = q, \ \bar{m} = -m$
- Similar calculation

$$V_{\rm int} = \frac{1}{2\pi} [-m^2 K_0(s) - q^2 K_0(\mu s)]$$

Always attractive

Vortex scattering

Vortex scattering

• Simple model:

$$L = \frac{1}{2}M(\mu)(|\dot{\mathbf{y}}|^2 + |\dot{\mathbf{z}}|^2) - V_{\mathrm{int}}(|\mathbf{y} - \mathbf{z}|)$$

Vortex scattering

• Cf Myers, Rebbi, Strilka (1992)

Critical coupling

- $\mu=1$: Higgs and photon have same mass, $q\equiv m$, so $V_{\rm int}\equiv 0$ [Aside: David Tong argues that $q=-2\pi 8^{\frac{1}{4}}$] For static (point) vortices, scalar attraction exactly balances magnetic repulsion
- Vortex scattering trivial? Certainly not.
- Scalar attraction mediated by scalar field ψ , magnetic repulsion mediated by vector field A Different tranformation properties under Lorentz boosts Do not balance for (point) vortices in relative motion
- Can compute L_{int} for point vortices moving along arbitrary trajectories $\mathbf{y}(t)$ and $\mathbf{z}(t)$, as an expansion in time derivatives

Moving point vortex

Point vortex moving along $\mathbf{y}(t)$ at constant velocity has

$$\bullet \ \kappa(\mathbf{x},t) = q \left(1 - \frac{1}{2}|\dot{\mathbf{y}}|^2\right) \delta(\mathbf{x} - \mathbf{y}(t))$$

$$q = area \times \kappa \qquad q' = \gamma(u)q$$

$$\bullet \ j^{\mu} = q(\mathbf{k} \times \dot{\mathbf{y}} \cdot \nabla, -\mathbf{k} \times \nabla + (\mathbf{k} \times \dot{\mathbf{y}})\dot{\mathbf{y}} \cdot \nabla) \delta(\mathbf{x} - \mathbf{y})$$

Interaction Lagrangian

$$L_{\rm int} = \int_{\mathbb{R}^2} \{ \kappa_{(1)} \psi_{(2)} - j_{(1)}^{\mu} A_{\mu}^{(2)} \}$$

- Need fields induced by moving point vortex 2
- If linear theory were massless, would use retarded potentials (standard problem)
- Use formal temporal Fourier tranform trick, expansion in time derivatives
- Actually, need to work up to terms linear in ÿ, ż

$$L_{\mathrm{int}} = -rac{q^2}{4\pi}|\dot{\mathbf{y}} - \dot{\mathbf{z}}|^2 \mathcal{K}_0(|\mathbf{y} - \mathbf{z}|)$$

Two vortex dynamics at critical coupling

$$L = \frac{\pi}{2}(|\dot{\mathbf{y}}|^2 + |\dot{\mathbf{z}}|^2) - \frac{q^2}{4\pi}K_0(|\mathbf{y} - \mathbf{z}|)|\dot{\mathbf{y}} - \dot{\mathbf{z}}|^2$$

• Geodesic motion on $\mathbb{R}^2 \times \mathbb{R}^2$ wrt to non-Euclidean metric

$$g = \pi \left(1 - \frac{q^2}{2\pi^2} K_0(|\mathbf{y} - \mathbf{z}|) \right) (d\mathbf{y} \cdot d\mathbf{y} + d\mathbf{z} \cdot d\mathbf{z}) + \frac{q^2}{\pi} K_0(|\mathbf{y} - \mathbf{z}|) d\mathbf{y} \cdot d\mathbf{z}$$

Asymptotic to the Samols metric

Critical vortex scattering

Concluding remarks

- Point soliton approx. now a standard tool for analyzing long range intersoliton forces
- Formal, but often confirmed by (more or less) rigorous analysis
- BPS monopoles: Manton (1985), Bielawski (1998)
- Static vortices: Speight (1997); moving critical vortices:
 Manton and Speight (2003)
- Skyrmions and baby Skyrmions: Schroers (1993)
- An aid to numerics e.g. Faddeev-Hopf solitons: Ward (2000);
 Skyrme sphalerons: Krusch and Sutcliffe (2004)