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Harmonic maps

1
0:M—NCR  E(0)= [ ldof
2/m
(AQ)(x) L To)N

@ Let's choose N = S? C RS hereafter:

A9 —(9-A@)p=0

@ ¢: M — S? (M=compact Riemann surface)
E(p) > 4mn, equality <= ¢ holomorphic

(Belavin-Polyakov-Liechnerowicz)
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@ Domain Lorentzian (E(@) now S(@)).
@ Let’s choose (M,n) = (R x ¥, d? — g5)

sto)= [ at{; [loi2 -~ [ 100}

(Oo)(t,x) L To(txyN  forall (t,x)eM

where (] =07 — Ay,
@ Obviously, static wave maps are harmonic maps ¥ — N
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WEVCRNETS

@ dimX = 2, most interesting to (my sort of) theoretical physicists:
Have large families of static solutions

M, = hol,(Z, S?)

which saturate a topological energy bound, and satisfy a
“Bogomolnyi” equation

Py =@ X Qx

@ Topological “solitons” (cf monopoles, vortices, instantons. . .)
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Geodesic approximation (Ward, after Manton)

1
@ Wave map flow conserves Ei = E(9(t)) + §/ o [?
b

@ Cauchy problem: ¢(0) € My, ¢:(0) € Ty(q)Mp, small

@ Eioal(t) = 4mn+ small for all time:
expect @(t) remains “close” to M, for all time.

@ Consider constrained variational problem for S, where
y(t) € M, for all t:

1
S[:/dt{5/2|\|f,|2—4nn}

y(t) follows a geodesic in (M, )

(X, Y):/X-Y, X,Y € TyM, Cy TS
>

@ Conjecture: y(t) with initial data yw(0) = @(0), y;(0) = ¢(0) is
a “good approximation” to wave map ¢(t)



Geodesic approximation

Two research strands

@ Study geometry of M, (with metric )
@ Try to prove the conjecture
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@ holy(C) = Rat}, lump scattering numerics (Ward, Leese). Metric
singular, foliation

@ holy(S?) =Raty = PL(2,C) = SO(3) x R® = - -, finite volume
and diameter, Ricci positive, unbounded curvature, geodesic flow
well understood (JMS, Baptista)
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Geometry of M,

@ holy(T?) = [T? x Raty]/[Z2 x Zs)], finite volume and diameter
(JMS), numerics (Cova)

@ holy(R x S") geodesic flow (Romao)

e hol;7(S?) =R x S' volume, total Gauss curvature, lifted
geodesic flow (McGlade-JMS)

@ Spectral geometry of holy (82): quantum dynamics of a lump on
S? (Krusch-JMS)

2nd strand: Prove conjecture (geodesic flow in M, approximates wave
map flow)
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Precise conjecture

Consider one-parameter family of Cauchy problems for wave map flow
RxY — &2
9(0) =0,  ©:(0) = ¢
where @o € Mp,, 91 € To,M, and € > 0.
There exist T > 0 and €, > 0 (depending on (¢o, ¢1)) such that, for all

€ € (0,&,], Cauchy problem has a unique solution for t € [0, T /€].
Furthermore, the time re-scaled solution

(pﬁ: [07 T]XZ_>327 (pg(’C,X):(p(T/S,X)

converges uniformly in C° normto y : [0, T] x ¥ — S?, the geodesic
in M, with the same initial data.

@ Loosely: the geodesic approximation “works” for times of order
1/€ when the initial velocities are of order €

@ Can’t do much better: M, incomplete!
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Stuart’s method

We'll sketch the proof in the case ¥ = T2. Ingredients:

@ Wave map eqn for ¢ < coupled ODE/PDE system for
®=y+e?Y

@ Short time existence and uniqueness theorem for this system (in
a suitable Sobolev space)

© Coercivity of the Hessian (and “higher” Hessian)

@ Energy estimates for Y(t)

@ A priori bound
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The moduli space

@ Moduli space (stereographic coord on S?)

0(2—31)‘“0(2—8/7) Yai=Yb,
v(z) _lo(z—b1)"'(5(2_bn)’ {ai}n{bi} =0

dim¢ M, =2n
@ Choose and fix initial data @g € Mp,, @1 € Tp,Mp.

@ Choose and fix real local coords g : R*" > U — M,
Denote by y(q) the h-map corresponding to g.
Convenient to demand that @y = y(0) and U = R*".
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Sobolev spaces

@ Sobolev spaces:

A" = {u:¥ — R|uand all partial derivs up to order k are in L2}
A R M A
2 1<|a<k’ >
HY = {Y:Z-R3| VY, Ye, Y58
IYIE = [Ivallk+ 1 Yallc+ 1 vallg
Note H° = 2.

@ Fact: 7" is a Banach algebra for k > 2, that is,

u,ve X = uve ", and lluv||x < c|lullk]|v||«
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Projection to the moduli space

@ Wave map equation

Qtt — Qxx — Qyy + (|(Pt|2 - ‘(PX|2 - ‘(Py‘Z)(P =0

@ Slow time T = &t (book-keeping device)
@ Decompose 0(t) = y(q(t)) +€2Y(t).
e Section:map Z: ¥ — RR®
e Tangent section: Z: ¥ — R3 s.t. Z-y = 0 everywhere

Y is not a tangent section (but it’s close):

1
WE=lof =1 = y-v=—ZeYf

@ Choose g so that y(q) (locally) minimizes || Y||o:

<Y,Z> =0, VZ e T\p(q)Mn‘
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PDE for Y

Y+ dyY = k+¢j

where
JY = =AY (W + 1w P)Y —2(wx Y+, - Yy
k = _Wﬂ_‘\lfﬂzw
jo= =2y Yow—e([Yil2 = [V P = Yy [P)w

—e(|We2— 2w, Y — 2y, - Y,) Y} —26%(y - V7)Y
(V2= [V ? =Y, )Y

@ We'll need to bound ||j||o, so work with Y € H3, Y; € H?
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The (improved) Jacobi operator

@ Fact: Jy, acting on tangent sections is the Jacobi operator for

h-map y

Hessy(Y,Y) = (Y,dY)

Self-adjoint elliptic operator on W' TS?, TyM, = ker Jy,
@ Annoying fact: J not self-adjoint on general sections
Self-adjointness of J is crucial for Stuart’s method

AY =
Ay =

—AY — (|wx[2+ [wy P) Y+ AY
—2(Wx- Yt Wy V)W
2{(v-YV)Ay+ (W Y)ux +(v- Yy vy}

@ Improved Jacobi operator Ly Y = Jiy, Y +ATY
Clearly self-adjoint, still elliptic
Ly = Jy on tangent sections
Ly(oy) = —(Ao)y — 4( 0, yx + 0y, ) on normal sections
Hence ker Ly, = ker Jy & (W)
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The (improved) Jacobi operator

@ For Y satisfying pointwise constraint y- Y = — J€?| Y|?,

ATY = —{|YPAY+ Yy, +|Y[ow, }

@ So, replace J by L and j by

J=i+e{|YPAY+[YEy+ Yy, }

@ Doesn’t change analytic structure of error term

Yi+LY =k+¢f
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Evolution of g(7)

@ Recall L? orthogonality constraint

v, 2

,Tqi :0, i:1,2,...,4n

since a ; span ker Jy
@ Differentiate w.r.t. t twice

(Y, gw,> = O(g)

oy
39 =)

NG
<\|’m>aq> = O(g)

(=LY + k

Geodesic flow (with O(€) correction).
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Summary: the ODE/PDE system

YetlY = ktgf
G+ T(Qpdas = ef(q, Y, Yi€)

Short time existence theorem
There exist €., T > 0, depending only on I', such that, for all € € (0, €,]
and any initial data

1Y (0)[15+ [ 2(0) 13+ a(0)[* + | (0) [ < T®
the system has a unique solution

(Y,q) € C°([0, T], H* o R*" N ---NnC3([0, T], H* & R*")

Furthermore, if the initial data are tangent to the L? orthogonality
constraint, and the pointwise constraint, the solution preserves these
constraints for all .

Proof: Picard’s method.
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Coercivity

IfY 1,2 kerdy, andy-Y =0, then
(Y, dyY) > c(w)ll Y.

The constant c¢(y) > 0 and depends continuously on .

Corollary

IfY L2 kerdy, and y- Y = —1€2| Y[, then

(v,1v) = e(w)(IYIF—YIl2)
and (LY,LLY) > c(w){IIVI5§—€*(IVI5+IY1I3)}

|| Y||3 is controlled by (LY, LLY). So what?
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Energy estimates

@ Take a solution of the ODE/PDE system, and consider the
quantity

1 1
Q1) = Il + 5 (v,Ly)

@ This is “quasi-conserved”:

% = (Y, =LY +k+¢&) + (Y, LY) + (Y, L Y)
- %<Y’k>+8{_<Yak1>+(Ytyj/>+<Y,L¢Y>}
ai(t) < ctc()(|gel+ g Y (D)o

t
+e [ e(lal.axl gl sl Yl i)

¢ denotes a cts bounding function, increasing in all its entries



Energy estimates

@ Higher energy,

Q(t) = (LY)J\%—#—%(LY,LLY)

iy
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Energy estimates

@ Higher energy,

1
(LY )3+ Ly, Ly)

Qu(t) = |

@ LY satisfies a PDE with same analytic structure. One finds

Q(t) < c+o(q)(|ael + )Y (D)]a

t
+e/0 o(lal, 1G: ) |geels [ gesel, | Yl 1 VilL2)

@ Key point: dominant term in growth of quadratic form Q. (which
controls || Y||3) is linear in || Y3
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A priori bound

Can repeatedly apply short time existence theorem, whilever
\g| +|ge| + || Y|z + || Y¢||2 remains bounded. Produce maximally
extended solution with Y(0) = Y;(0) = 0.

o Let (1) = qo(t) +€%q(t)
where qo(T) solves exact geodesic flow.

o M(1) = max {|q(s)| +[a(s)| + | V(s) 3+ 1| Ve(s) B}
Solution exists whilever M(t) remains bounded

@ By coercivity, energy estimates, elementary estimates for g

M(t) < c+ cM(t)2 +ete(M(1))
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A priori bound

M(t) < c+ cM(t)2 +ete(M(t))

@ Choose M, > 0 large, and for each € > 0 let ; be the first time

when M = M,.
Claim there exists €, > 0 such that €f; is bounded away from 0 on
(0,&.].

If not, there exists a sequence € — 0 so that e — 0, whence

1
M, < c+ cM?

a contradiction for M, sufficiently large.
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A priori bound

“Precise conjecture” follows:
@ There exists T, = inf{et; : € € (0,€.]} > 0 such that, as € — 0,

q(t) — qo(t) uniformly on [0, T..]

@ ||Y|s remains bounded for t € [0, .. /€|, and
[Ylleo <cllYlz < el Yls,

so @¢(T) converges uniformly on [0, T...] to W(qo(7))
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Concluding remarks

@ Proved for ¥ = T2, but argument should immediately generalize
to any compact RS

@ Generalizing target space is much harder. Static model has right
properties when N=compact Kahler, but what’s analogue of

0(t) = y(t) +2Y(t)?
@ We first tried (even for N = S?1)

O(1) = expy(r) € V(1)

but this doesn’t work (j has Y, terms, fatal for short time
existence result and higher energy estimate)

@ Presumably extrinsic set-up can be used. Hideous.



LMS short instructional course

Geometry, Field Theory and Solitons
University of Leeds, 26-31 July 2009

@ The geometry of soliton moduli spaces
Prof. Nick Manton FRS (Cambridge)
@ Supersymmetry and solitons
Dr. David Tong (Cambridge)
@ ADHM, Nahm and Fourier-Mukai transforms
Prof. Jacques Hurtubise (McGill)
@ Plus one-hour lectures by Prof. Richard Ward FRS (Durham) and
Dr. Joost Slingerland (IAS Dublin)



