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Harmonic maps

ϕ : M → N ⊂ Rk , E(ϕ) =
1
2

Z
M
|dϕ|2

(∆ϕ)(x)⊥ Tϕ(x)N

Let’s choose N = S2 ⊂ R3 hereafter:

∆ϕ− (ϕ ·∆ϕ)ϕ = 0

ϕ : M → S2 (M=compact Riemann surface)

E(ϕ)≥ 4πn, equality ⇐⇒ ϕ holomorphic

(Belavin-Polyakov-Liechnerowicz)
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Wave maps

Domain Lorentzian (E(ϕ) now S(ϕ)).

Let’s choose (M,η) = (R×Σ,dt2−gΣ)

S(ϕ) =
Z

R
dt

{
1
2

Z
Σ
|ϕt |2−

1
2

Z
Σ
|dϕ|2

}

(�ϕ)(t,x)⊥ Tϕ(t,x)N for all (t,x) ∈M

where � = ∂2
t −∆Σ.

Obviously, static wave maps are harmonic maps Σ→ N
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Wave maps

dimΣ = 2, most interesting to (my sort of) theoretical physicists:
Have large families of static solutions

Mn = holn(Σ,S2)

which saturate a topological energy bound, and satisfy a
“Bogomolnyi” equation

ϕy = ϕ×ϕx

Topological “solitons” (cf monopoles, vortices, instantons. . . )
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Geodesic approximation (Ward, after Manton)

Wave map flow conserves Etotal = E(ϕ(t))+
1
2

Z
Σ
|ϕt |2

Cauchy problem: ϕ(0) ∈Mn, ϕt(0) ∈ Tϕ(0)Mn, small

Etotal(t) = 4πn + small for all time:
expect ϕ(t) remains “close” to Mn for all time.

Consider constrained variational problem for S, where
ψ(t) ∈Mn for all t :

S|=
Z

dt{1
2

Z
Σ
|ψt |2−4πn}

ψ(t) follows a geodesic in (Mn,γ)

γ(X ,Y ) =
Z
Σ

X ·Y , X ,Y ∈ TψMn ⊂ ψ
−1TS2.

Conjecture: ψ(t) with initial data ψ(0) = ϕ(0), ψt(0) = ϕt(0) is
a “good approximation” to wave map ϕ(t)
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Geodesic approximation

Two research strands

1 Study geometry of Mn (with metric γ)
2 Try to prove the conjecture



Geometry of Mn

Recall Mn = holn(Σ)

holn(Σ) is Kähler, formally (Ruback), rigorously for Σ = S2 all n,
Σ = T 2 n = 2 (JMS)

holn(Σ) geodesically incomplete (Sadun-JMS)

hol2(C) = Rat∗2, lump scattering numerics (Ward, Leese). Metric
singular, foliation

hol1(S2) = Rat1 = PL(2,C) = SO(3)×R3 = · · · , finite volume
and diameter, Ricci positive, unbounded curvature, geodesic flow
well understood (JMS, Baptista)
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Geometry of Mn

hol2(T 2) = [T 2×Rat1]/[Z2×Z2], finite volume and diameter
(JMS), numerics (Cova)

holn(R×S1) geodesic flow (Romao)

holeq
n (S2) = R×S1 volume, total Gauss curvature, lifted

geodesic flow (McGlade-JMS)

Spectral geometry of hol1(S2): quantum dynamics of a lump on
S2 (Krusch-JMS)

2nd strand: Prove conjecture (geodesic flow in Mn approximates wave
map flow)



Geometry of Mn

hol2(T 2) = [T 2×Rat1]/[Z2×Z2], finite volume and diameter
(JMS), numerics (Cova)

holn(R×S1) geodesic flow (Romao)

holeq
n (S2) = R×S1 volume, total Gauss curvature, lifted

geodesic flow (McGlade-JMS)

Spectral geometry of hol1(S2): quantum dynamics of a lump on
S2 (Krusch-JMS)

2nd strand: Prove conjecture (geodesic flow in Mn approximates wave
map flow)



Geometry of Mn

hol2(T 2) = [T 2×Rat1]/[Z2×Z2], finite volume and diameter
(JMS), numerics (Cova)

holn(R×S1) geodesic flow (Romao)

holeq
n (S2) = R×S1 volume, total Gauss curvature, lifted

geodesic flow (McGlade-JMS)

Spectral geometry of hol1(S2): quantum dynamics of a lump on
S2 (Krusch-JMS)

2nd strand: Prove conjecture (geodesic flow in Mn approximates wave
map flow)



Geometry of Mn

hol2(T 2) = [T 2×Rat1]/[Z2×Z2], finite volume and diameter
(JMS), numerics (Cova)

holn(R×S1) geodesic flow (Romao)

holeq
n (S2) = R×S1 volume, total Gauss curvature, lifted

geodesic flow (McGlade-JMS)

Spectral geometry of hol1(S2): quantum dynamics of a lump on
S2 (Krusch-JMS)

2nd strand: Prove conjecture (geodesic flow in Mn approximates wave
map flow)



Geometry of Mn

hol2(T 2) = [T 2×Rat1]/[Z2×Z2], finite volume and diameter
(JMS), numerics (Cova)

holn(R×S1) geodesic flow (Romao)

holeq
n (S2) = R×S1 volume, total Gauss curvature, lifted

geodesic flow (McGlade-JMS)

Spectral geometry of hol1(S2): quantum dynamics of a lump on
S2 (Krusch-JMS)

2nd strand: Prove conjecture (geodesic flow in Mn approximates wave
map flow)



Precise conjecture

Consider one-parameter family of Cauchy problems for wave map flow
R×Σ→ S2:

ϕ(0) = ϕ0, ϕt(0) = εϕ1

where ϕ0 ∈Mn, ϕ1 ∈ Tϕ0Mn and ε > 0.
There exist T > 0 and ε∗ > 0 (depending on (ϕ0,ϕ1)) such that, for all
ε ∈ (0,ε∗], Cauchy problem has a unique solution for t ∈ [0,T/ε].
Furthermore, the time re-scaled solution

ϕε : [0,T ]×Σ→ S2, ϕε(τ,x) = ϕ(τ/ε,x)

converges uniformly in C0 norm to ψ : [0,T ]×Σ→ S2, the geodesic
in Mn with the same initial data.

Loosely: the geodesic approximation “works” for times of order
1/ε when the initial velocities are of order ε

Can’t do much better: Mn incomplete!
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Stuart’s method

We’ll sketch the proof in the case Σ = T 2. Ingredients:

1 Wave map eqn for ϕ ↔ coupled ODE/PDE system for
ϕ = ψ+ ε2Y

2 Short time existence and uniqueness theorem for this system (in
a suitable Sobolev space)

3 Coercivity of the Hessian (and “higher” Hessian)
4 Energy estimates for Y (t)
5 A priori bound
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The moduli space

Moduli space (stereographic coord on S2)

ψ(z) = λ
σ(z−a1) · · ·σ(z−an)

σ(z−b1) · · ·σ(z−bn)
,

∑ai = ∑bi ,
{ai}∩{bi}= /0

dimC Mn = 2n

Choose and fix initial data ϕ0 ∈Mn, ϕ1 ∈ Tϕ0Mn.

Choose and fix real local coords q : R4n ⊃ U →Mn

Denote by ψ(q) the h-map corresponding to q.
Convenient to demand that ϕ0 = ψ(0) and U = R4n.
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Sobolev spaces

Sobolev spaces:

H k = {u : Σ→ R |u and all partial derivs up to order k are in L2}

‖u‖2
k =

Z
Σ

u2 + ∑
1≤|α≤k

Z
Σ
(∂αu)2

Hk = {Y : Σ→ R3 |Y1,Y2,Y3 ∈H k}
‖Y‖2

k = ‖Y1‖2
k +‖Y2‖2

k +‖Y3‖2
k

Note H0 = L2.

Fact: H k is a Banach algebra for k ≥ 2, that is,

u,v ∈H k ⇒ uv ∈H k , and ‖uv‖k ≤ c‖u‖k‖v‖k
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Projection to the moduli space

Wave map equation

ϕtt −ϕxx −ϕyy +(|ϕt |2−|ϕx |2−|ϕy |2)ϕ = 0

Slow time τ = εt (book-keeping device)
Decompose ϕ(t) = ψ(q(τ))+ ε2Y (t).

Section: map Z : Σ→ R3

Tangent section: Z : Σ→ R3 s.t. Z ·ψ = 0 everywhere

Y is not a tangent section (but it’s close):

|ψ|2 = |ϕ|2 = 1 ⇒ ψ ·Y =−1
2

ε
2|Y |2

Choose q so that ψ(q) (locally) minimizes ‖Y‖0:

〈Y ,Z 〉= 0, ∀Z ∈ Tψ(q)Mn.
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PDE for Y

Ytt + JψY = k + εj

where

JψY = −∆Y − (|ψx |2 + |ψy |2)Y −2(ψx ·Yx +ψy ·Yy)ψ

k = −ψττ−|ψτ|2ψ

j = −2(ψτ ·Yt)ψ− ε(|Yt |2−|Yx |2−|Yy |2)ψ
−ε(|ψτ|2−2ψx ·Yx −2ψy ·Yy)Y}−2ε

2(ψτ ·Yt)Y

−ε
3(|Yt |2−|Yx |2−|Yy |2)Y

We’ll need to bound ‖j‖0, so work with Y ∈ H3, Yt ∈ H2
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The (improved) Jacobi operator

Fact: Jψ acting on tangent sections is the Jacobi operator for
h-map ψ

Hessψ(Y ,Y ) = 〈Y ,JψY 〉
Self-adjoint elliptic operator on ψ−1TS2, TψMn = kerJψ

Annoying fact: J not self-adjoint on general sections
Self-adjointness of J is crucial for Stuart’s method

JψY = −∆Y − (|ψx |2 + |ψy |2)Y +AY

AY = −2(ψx ·Yx +ψy ·Yy)ψ

A†Y = 2{(ψ ·Y )∆ψ+(ψ ·Y )xψx +(ψ ·Yy)ψy}

Improved Jacobi operator LψY = JψY +A†Y
Clearly self-adjoint, still elliptic
Lψ = Jψ on tangent sections
Lψ(αψ) =−(∆α)ψ−4(αxψx +αy ψy) on normal sections
Hence kerLψ = kerJψ⊕〈ψ〉
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The (improved) Jacobi operator

For Y satisfying pointwise constraint ψ ·Y =−1
2 ε2|Y |2,

A†Y =−ε
2{|Y |2∆ψ+ |Y |2xψx + |Y |2y ψy}

So, replace J by L and j by

j ′ = j + ε{|Y |2∆ψ+ |Y |2xψx + |Y |2y ψy}

Doesn’t change analytic structure of error term

Ytt +LY = k + εj ′
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Evolution of q(τ)

Recall L2 orthogonality constraint

〈Y ,
∂ψ

∂qi 〉= 0, i = 1,2, . . . ,4n

since ∂ψ

∂qi span kerJψ

Differentiate w.r.t. t twice

〈Ytt ,
∂ψ

∂qi 〉 = O(ε)

〈−LY + k ,
∂ψ

∂qi 〉 = O(ε)

〈ψττ,
∂ψ

∂qi 〉 = O(ε)

Geodesic flow (with O(ε) correction).
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Summary: the ODE/PDE system

Ytt +LY = k + εj ′

qi
ττ +Γ(q)i

jk qj
τqk

τ = εf i(q,qτ,Y ,Yt ,ε)

Short time existence theorem
There exist ε∗,T > 0, depending only on Γ, such that, for all ε ∈ (0,ε∗]
and any initial data

‖Y (0)‖2
3 +‖Yt(0)‖2

2 + |q(0)|2 + |qτ(0)|2 ≤ Γ2

the system has a unique solution

(Y ,q) ∈ C0([0,T ],H3⊕R4n)∩·· ·∩C3([0,T ],H0⊕R4n)

Furthermore, if the initial data are tangent to the L2 orthogonality
constraint, and the pointwise constraint, the solution preserves these
constraints for all t .
Proof: Picard’s method.



Summary: the ODE/PDE system

Ytt +LY = k + εj ′

qi
ττ +Γ(q)i

jk qj
τqk

τ = εf i(q,qτ,Y ,Yt ,ε)

Short time existence theorem
There exist ε∗,T > 0, depending only on Γ, such that, for all ε ∈ (0,ε∗]
and any initial data

‖Y (0)‖2
3 +‖Yt(0)‖2

2 + |q(0)|2 + |qτ(0)|2 ≤ Γ2

the system has a unique solution

(Y ,q) ∈ C0([0,T ],H3⊕R4n)∩·· ·∩C3([0,T ],H0⊕R4n)

Furthermore, if the initial data are tangent to the L2 orthogonality
constraint, and the pointwise constraint, the solution preserves these
constraints for all t .
Proof: Picard’s method.



Summary: the ODE/PDE system

Ytt +LY = k + εj ′

qi
ττ +Γ(q)i

jk qj
τqk

τ = εf i(q,qτ,Y ,Yt ,ε)

Short time existence theorem
There exist ε∗,T > 0, depending only on Γ, such that, for all ε ∈ (0,ε∗]
and any initial data

‖Y (0)‖2
3 +‖Yt(0)‖2

2 + |q(0)|2 + |qτ(0)|2 ≤ Γ2

the system has a unique solution

(Y ,q) ∈ C0([0,T ],H3⊕R4n)∩·· ·∩C3([0,T ],H0⊕R4n)

Furthermore, if the initial data are tangent to the L2 orthogonality
constraint, and the pointwise constraint, the solution preserves these
constraints for all t .
Proof: Picard’s method.



Summary: the ODE/PDE system

Ytt +LY = k + εj ′

qi
ττ +Γ(q)i

jk qj
τqk

τ = εf i(q,qτ,Y ,Yt ,ε)

Short time existence theorem
There exist ε∗,T > 0, depending only on Γ, such that, for all ε ∈ (0,ε∗]
and any initial data

‖Y (0)‖2
3 +‖Yt(0)‖2

2 + |q(0)|2 + |qτ(0)|2 ≤ Γ2

the system has a unique solution

(Y ,q) ∈ C0([0,T ],H3⊕R4n)∩·· ·∩C3([0,T ],H0⊕R4n)

Furthermore, if the initial data are tangent to the L2 orthogonality
constraint, and the pointwise constraint, the solution preserves these
constraints for all t .
Proof: Picard’s method.



Coercivity

Theorem

If Y ⊥L2 kerJψ, and ψ ·Y = 0, then

〈Y ,JψY 〉 ≥ c(ψ)‖Y‖2
1.

The constant c(ψ) > 0 and depends continuously on ψ.

Corollary

If Y ⊥L2 kerJψ, and ψ ·Y =−1
2 ε2|Y |2, then

〈Y ,LY 〉 ≥ c(ψ)(‖Y‖2
1− ε

2‖Y‖4
2)

and 〈LY ,LLY 〉 ≥ c(ψ)
{
‖Y‖2

3− ε
2(‖Y‖2

3 +‖Y‖4
3)

}
‖Y‖3 is controlled by 〈LY ,LLY 〉. So what?
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Energy estimates

Take a solution of the ODE/PDE system, and consider the
quantity

Q1(t) =
1
2
‖Yt‖2

0 +
1
2
〈Y ,LY 〉

This is “quasi-conserved”:

dQ1

dt
= 〈Yt ,−LY + k + εj ′〉+ 〈Yt ,LY 〉+ ε〈Y ,LτY 〉

=
d
dt
〈Y ,k〉+ ε{−〈Y ,kτ〉+ 〈Yt , j

′〉+ 〈Y ,LτY 〉}

Q1(t) ≤ c + c(q)(|qττ|+ |qτ|2)‖Y (t)‖0

+ε

Z t

0
c(|q|, |qτ|, |qττ|, |qτττ|,‖Y‖3,‖Yt‖2)

c denotes a cts bounding function, increasing in all its entries
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Energy estimates

Higher energy,

Q2(t) =
1
2
‖(LY )t‖2

0 +
1
2
〈LY ,LLY 〉

LY satisfies a PDE with same analytic structure. One finds

Q2(t) ≤ c + c(q)(|qττ|+ |qτ|2)‖Y (t)‖3

+ε

Z t

0
c(|q|, |qτ|, |qττ|, |qτττ|,‖Y‖3,‖Yt‖2)

Key point: dominant term in growth of quadratic form Q2 (which
controls ‖Y‖2

3) is linear in ‖Y‖3
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controls ‖Y‖2

3) is linear in ‖Y‖3



A priori bound

Can repeatedly apply short time existence theorem, whilever
|q|+ |qτ|+‖Y‖3 +‖Yt‖2 remains bounded. Produce maximally
extended solution with Y (0) = Yt(0) = 0.

Let q(t) = q0(τ)+ ε
2q̃(t)

where q0(τ) solves exact geodesic flow.

M(t) = max
0≤s≤t

{|q(s)|+ |q̃t(s)|+‖Y (s)‖2
3 +‖Yt(s)‖2

2}
Solution exists whilever M(t) remains bounded

By coercivity, energy estimates, elementary estimates for q̃

M(t)≤ c + cM(t)
1
2 + εtc(M(t))
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A priori bound

M(t)≤ c + cM(t)
1
2 + εtc(M(t))

Choose M∗ > 0 large, and for each ε > 0 let tε be the first time
when M = M∗.
Claim there exists ε∗ > 0 such that εtε is bounded away from 0 on
(0,ε∗].
If not, there exists a sequence ε→ 0 so that εtε → 0, whence

M∗ ≤ c + cM
1
2∗

a contradiction for M∗ sufficiently large.
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A priori bound

“Precise conjecture” follows:

There exists T∗∗ = inf{εtε : ε ∈ (0,ε∗]}> 0 such that, as ε→ 0,

q(τ)→ q0(τ) uniformly on [0,T∗∗]

‖Y‖3 remains bounded for t ∈ [0,T∗∗/ε], and

‖Y‖C0 ≤ c‖Y‖2 ≤ c‖Y‖3,

so ϕε(τ) converges uniformly on [0,T∗∗] to ψ(q0(τ))
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Concluding remarks

Proved for Σ = T 2, but argument should immediately generalize
to any compact RS

Generalizing target space is much harder. Static model has right
properties when N=compact Kähler, but what’s analogue of
ϕ(t) = ψ(τ)+ ε2Y (t)?

We first tried (even for N = S2!)

ϕ(t) = expψ(τ) ε
2Y (t)

but this doesn’t work (j has Yxx terms, fatal for short time
existence result and higher energy estimate)

Presumably extrinsic set-up can be used. Hideous.
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