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Single component GL theory

ψ : R2→ C, gauge field A, magnetic field B = dA

E =
∫

R2

1
2
|dAψ|2 +

1
2
|B|2 + α|ψ|2 +

β

2
|ψ|4

where dAψ = dψ− iAψ

If temperature T < Tc then α < 0
Normal state ψ = 0 unstable

Meissner state |ψ|=

√
|α|
β

Rescale: one remaining parameter λ > 0

E =
∫

R2

1
2
|dAψ|2 +

1
2
|B|2 +

λ

8
(1−|ψ|2)2



Vortices

E =
∫

R2

1
2
|dAψ|2 +

1
2
|B|2 +

λ

8
(1−|ψ|2)2

Finite energy:
ψ : S1

∞→ S1 ⊂ C, winding n
dAψ(∞) = 0 ⇒ A∞ = d(arg(ψ∞))

Stokes’s theorem: Φ =
∫

R2
B =

∫
S1

∞

A = 2πn

Field equations

−∗dA ∗dAψ− λ

2
(1−|ψ|2)ψ = 0

−∗d∗B = Im(ψdAψ)

Vortex ansatz ψ = σ(r)einθ, A = a(r)dθ

Reduces to ODEs



Vortices
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Large r behaviour

ψ =
(

1 +
q

2π
K0(
√

λr) + · · ·
)

eiθ

A =
(

1 +
m
2π

rK1(r) + · · ·
)

dθ

Constants q(λ),m(λ) determined numerically



Single component GL theory

q(1)≡m(1)



Type I / Type II dichotomy

En=1(λ) monotonically increasing, En=1(1) = π

Stability for n > 1 depends on λ:
λ > 1: E2 > 2E1 so coincident vortices release energy by
separating
λ < 1: E2 < 2E1 well-separated vortices release energy by
coalescing

Dichotomy: λ < 1 Type I, λ > 1 Type II



Type I / Type II dichotomy

Two vortex interaction energy
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Point vortex model

Gauge choice: ψ real (unique vacuum ψ = 1)

Unwind static vortex with singular gauge transformation

ψ̂ = ψ−1 =
q

2π
K0(
√

λr) + · · · , A =
m
2π

rK1(r)dθ + · · ·



Point vortex model

ψ̂ = ψ−1 =
q

2π
K0(
√

λr) + · · · , A =
m
2π

rK1(r)dθ + · · ·

Coincides asymptotically with solution of linearization of model
about the vacuum ψ̂ = 0

L =
1
2

∂µψ̂∂
µ
ψ̂− λ

2
ψ̂

2− 1
4

FµνF µν− 1
2

AµAµ + κψ̂− jµAµ

in the presence of point sources

κ = qδ(x) scalar monopole

jµ = m(0,∂y ,−∂x )δ(x) magnetic dipole



Point vortex model

Intervortex forces at long range should approach those between
two such ”point vortices” interacting via the linear theory
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Point vortex model

Interaction between sources κ1,κ2 for a real scalar field ψ̂ of
mass

√
λ

Lint =
∫

R2
κ1ψ̂2 where ∆ψ̂2 + λψ̂2 = κ2

Two static monopoles κ1(x) = qδ(x− y), κ2(x) = qδ(x− z)

Lint =
∫

R2
qδ(x− y)

q
2π

K0(
√

λ|x− z|)d2x =
q2

2π
K0(
√

λ|y− z|)

Interaction of vector dipoles similar

Total interaction energy (R = |y− z|)

Eint(R) =
1

2π

[
m2K0(R)−q2K0(

√
λR)

]



Point vortex model
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Critical applied fields

Bc1 = field required to produce a vortex = Evortex
2π

Bc2 = min field for which trivial soln (ψ = 0, B = const)is stable
= λ

2

Type I: field required to produce vortex is larger than field at
which normal state is stable: never produce vortices

Type II: field window [Bc1,Bc2] where vortex creation is possible



Critical applied fields

Vortices, if they occur at all, always repel. Abrikosov vortex lattice

NbSe2, 1T, 1.8K (H. F. Hess et al., Phys. Rev. Lett. 62, 214 (1989))



Two-component GL theory

Some superconductors have more than one electron-pair
condensate

Toy model

E =
∫

R2

1
2
|B|2 + ∑

i=1,2

1
2
|dAψi |2−αi |ψi |2 +

1
2

βi |ψi |4

Meissner state |ψi |= ui =

√
αi

βi

Linearization about Meissner state:
real scalar bosons ψ̂i = |ψi |−ui , masses µi = 2

√
αi

real scalar boson ∆ = arg(ψ1)−arg(ψ2), massless
vector boson of mass µA =

√
u2

1 + u2
2

Vortices as before (n1 = n2)



Two-component GL theory
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Vortex interactions

”Point vortex” carries
two scalar monopole charges qi ,
inducing scalar fields ψ̂i of mass µi

no source for ∆
magnetic dipole moment m,
inducing vector field A of mass µA =

√
u2

1 + u2
2

Interaction energy: sum of three terms

Long range attraction if min{µ1,µ2}< µA

Large regions of parameter space for which this coincides with
short range repulsion. Naive expectation: this happens when
µ1 < µA < µ2



Vortex interactions

Critical fields

Bc1 =
Evortex

2π
, Bc2 = max{2α1,2α2}

Nonmonotic regime intersects Bc1 < Bc2 regime



Type 1.5 superconductivity?

Imagine we have a superconductor described by TCGL and we
turn up an applied magnetic field H.

When H reaches Bc1 it becomes energetically favourable for
magnetic flux to penetrate in a vortex (like type II)

Increasing H, until we reach Bc2, more and more vortices
penetrate (like type II)...

...but it’s energetically favourable for the vortices to clump
together at a fixed separation, rather than form a regular lattice of
increasing density (not like type II)

Predict clumps of flux penetration in a sea of Meissner state (like
type I)...

...but within each clump, flux will penetrate in a vortex lattice of
fixed unit cell size (not like type I)

We called it “semi-Meissner state”...



Type 1.5 superconductivity?

...Moshchalkov et al found similar structure in MgB2

H = 5 Oe, Bitter decoration H = 10µT , SQUID microscopy
They called it “type 1.5 superconductivity”

Not universally accepted (existence, or explanation).



Interband couplings

Main criticism of our analysis: having no direct coupling between
condensates is very unrealistic (only interaction is via em field). In
real superconductors, have

direct coupling through Josephson effect

VJos =−η1

2
(ψ1ψ2 + ψ1ψ2)

gradient-gradient coupling (except in ultra clean samples) due to
electron scattering off impurities

νRe(dAψ1,dAψ2)

Also, if we’re including terms up to order 4, why don’t we include

VQuartic = η2|ψ1|2|ψ2|2?

Once condensates are coupled, expect this to equalize their
decay rates as r → ∞. Maybe this eliminates the type 1.5 regime
altogether?



Interband couplings

Riposte: direct coupling terms are forbidden in many interesting
systems (e.g. liquid metallic hydrogen), so our original analysis is
still relevant to such systems.
Better riposte: the length scales of interest are inverse masses of
the (now mixed) normal modes not the condensates themselves.

Let V = V1(ψ1) + V2(ψ2) + VJos(ψ1,ψ2) + VQuartic(ψ1,ψ2)
Then µ2

1,µ
2
2 are eigenvalues of

Hij =
∂2V

∂|ψ|i∂|ψ|j

∣∣∣∣
|ψi |=ui ,∆=0

Linearize theory about vacuum (u1,u2)(
|ψ1|
|ψ2|

)
=

(
u1

u2

)
+ χ1e1 + χ2e2, H ei = µ2

i ei

Get decoupled theory of real scalar fields χi (mixed normal
modes), masses µi , and vector boson A, mass µA =

√
u2

1 + u2
2 .

Can still have splitting µ1 < µA < µ2



Interband couplings

Even better riposte: large scale numerical simulations of the
model including all these extra terms show that there are big
regions of parameter space where vortex interaction is
non-monotonic [Babaev, Carlstrom, JMS].



Interband couplings

Doesn’t answer question of whether MgB2 supports type 1.5
superconductivity (have no idea what the interband coupling
parameters are). But it does show that type 1.5 superconductivity
is possible in principle.



Concluding remarks

Multicomponent GL theory exhibits lots more interesting
phenomena

If V independent of ∆, fractional flux vortices

ψi = fi(r)eini θ ⇒ Φ =
n1u2

1 + n2u2
2

u2
1 + u2

2

[Babaev, Jäykkä,JMS]



Concluding remarks

Large gradient-gradient coupling encourages phase anti-locking
where gradients are large. With opposed Josephson term,
vortices get ”twisted”: zeros of ψi slip apart. ”Skyrmion”

[ψ1,ψ2] : R2→ CP1 ∼= S2

Three component model with quadratic Josephson terms can
exhibit phase frustration and CP2 ”Skyrmions”

ϕ = [ψ1,ψ2,ψ3] : R2→ CP2

Flux quantization Φ/2π = [ϕ∗ω] ∈ H2(R2∪{∞}) = Z
Detailed energetics of vortex “molecules” unexplored (cf baby
Skyrmions)
Effect of quartic phase coupling terms unexplored

VJos4 = η3(ψ
2
1ψ

2
2 + ψ

2
1ψ

2
2)

These solitons actually exist in nature and present many
interesting open problems!


