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What are vortices?

L =
1

2
DµϕDµϕ− 1

4
FµνF

µν − λ

8
(1− |ϕ|2)2

Dµϕ = (∂µ − iAµ)ϕ, Fµν = ∂µAν − ∂νAµ
B = F12, ei = F0i

Finite energy: ϕ ∼ e iχ at large r , winding number n ∈ Z.

Finite energy: Diϕ ∼ 0 at large r : A = Aidx i ∼ dχ∫
R2

B =

∫
R2

dA =

∮
S1
∞

A = 2πn

Flux quantization



What are vortices?

Vortex: energy minimizer with n = 1

ϕ = f (r)e iθ, A = a(r)dθ

Multivortices: for any n ≥ 2, static solutions

ϕ = fn(r)e inθ, A = an(r)dθ

Stable if λ < 1, unstable if λ > 1. Unique in both cases

Critical coupling: λ = 1, space of static solutions much more
interesting



Bogomol’nyi argument

E =
1

2

∫
R2

{
|D1ϕ|2 + |D2ϕ|2 + B2 +
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= E − 1
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∫
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B

= E − πn

Hence E ≥ πn with equality iff

(Di + iD2)ϕ = 0 (BOG1)

B =
1

2
(1− |ϕ|2) (BOG2)



Moduli space

Taubes: gauge equivalence classes of solns of
(BOG1), (BOG2) ↔ unordered collections of n points in
R2 = C (not nec. distinct)

↔ unique monic polynomial whose roots are the marked
points

P(z) = (z − z1)(z − z2) · · · (z − z2) = zn + a1z
n−1 + · · ·+ an

↔ (a1, a2, . . . , an) ∈ Cn

Hence the moduli space of n-vortex solutions Mn
∼= Cn



Geodesic approximation

L =
1

2

∫
R2

(|ϕ̇|2 + |Ȧ|2)− Estatic(ϕ,A)



Geodesic approximation

L|Mn =
1

2

∫
R2

(|
∑ ∂ϕ

∂zr
żr |2 + |

∑ ∂A

∂zr
żr |2)− πn



Geodesic approximation

L|Mn =
1

2

∑
r ,s

γrs żr żs − πn



Geodesic approximation

Geodesic motion in Mn w.r.t. metric γ induced by K.E.

In maths literature, γ is called the “L2 metric”

Obviously hermitian

J : TpMn → TpMn, γ(JX , JY ) ≡ γ(X ,Y )

Kähler form ω(X ,Y ) = γ(JX ,Y )

Mn is kähler: dω = 0

Quantum geodesic motion: i∂tΨ = 1
2 ∆Ψ



Vortices on compact surfaces

Spacetime Σ× R, η = dt2 − gΣ

Why?

Σ = T 2 = C/Λ: vortex lattices
More generally: vortex ”gas”
Maths: equivariant Gromov-Witten theory

Need a bit more mathematical sophistication: hermitian line
bundle L over Σ, ϕ a section, A a connexion

E (ϕ,A) =
1

2
‖dAϕ‖2 +

1

2
‖FA‖2 +

1

8
‖1− |ϕ|2‖2

Still have flux quantization:∫
Σ

FA = 2πn

n = deg(L)



Vortices on compact surfaces

Still have Bogomol’nyi argument: E ≥ πn with equality iff

∂Aϕ = 0 (BOG1)

FA =
1

2
(1− |ϕ|2) ∗ 1 (BOG2)

Bradlow bound: integrate (BOG2) over Σ

2πn =
1

2
Area(Σ)− 1

2
‖ϕ‖2 ≤ 1

2
Area(Σ)

No vortex solutions if Area(Σ) < 4πn.
If Area(Σ) = 4πn all solutions have ϕ ≡ 0, ∗FA constant
If Area(Σ) > 4πn, vortex solutions ↔ effective divisors on Σ of
degree n
Mn = Σn/Sn



Dissolved vortices

Note: ϕ = 0, ∗FA = 2πn/Area(Σ) is always a solution of the
Euler-Lagrange equations

E =
2π2n2

Area(Σ)
+

1

8
Area(Σ)

Solution not unique (up to gauge) if H1(Σ) 6= 0: Mdis
n = T 2g

(g = genus(Σ))

Area(Σ)↘ 4πn: “dissolving” limit

|ϕ| becomes small, FA becomes uniform

g � n studied by Manton and Romao

g = 0 studied by Baptista and Manton



Vortices on a sphere

Mn
∼= CPn

Use stereographic coord z on S2

[(z1, z2, . . . , zn)]↔ P(z) = a0 + a1z + · · ·+ anz
n

an = an−1 = · · · = 0 ⇒ root(s) at z =∞
(a0, a1, . . . , an) ∼ (λa0, λa1, . . . , λan)

Metric γL2 not known exactly, but...

Manton exactly computed the volume of (Mn, γL2)!

Vol(Mn(S2)) =
πn(Area(S2)− 4πn)n

n!

valid on any sphere
shrinks to 0 as Area(S2)↘ 4πn



The conjecture

Define R s.t. Area(S2) = 4πR2

Rescale γL2 to normalize volume: γ′L2 = γL2/(R2 − n)

Conjecture (Baptista, Manton): As R2 ↘ n, γ′L2 converges
uniformly to “the” Fubini-Study metric on CPn

Originally made for round metric on S2 - but argument
obviously generalizes to any metric

Huge symmetry gain (at most SO(3) → U(n))

So what? E.g. quantum energy spectrum should have
unexpected large quasi-degeneracies



What is the FS metric?

Unique kähler-einstein metric on CPn

In inhomogeneous coords [1,w1, . . . ,wn]

γFS =

∑
i dwidw i

1 + |w |2
−

(
∑

i w idwi )(
∑

j wjdw j)

(1 + |w |2)2
.

Hopf fibration Cn+1 ⊃ S2n+1 → CPn:
π : (a0, a1, . . . , an) 7→ [a0, a1, . . . , an]

γFS is the unique riemannian metric on CPn such that
π : S2n+1 → CPn is a riemannian submersion:

TpS
2n+1 = ker dπp ⊕Hp

dπp : Hp → Tπ(p)CPn is an isometry



Intuition

In dissolving limit ϕ→ 0 and A→ constant curvature
connexion

On L→ S2, const curv connexion is unique (up to gauge)

Choose and fix such a connexion A, assume ϕ is “small” and
solves (BOG1):

∂Aϕ = 0

ϕ holomorphic w.r.t. holo structure defined by A

In a holomorphic trivialization of L over S2\pt

ϕ = a0 + a1z + · · ·+ anz
n

Remaining gauge freedom: ϕ 7→ e icϕ



Intuition

No such ϕ can solve (BOG2)

FA =
1

2
(1− |ϕ|2) ∗ 1

Demand only that it solves (BOG2) “on average”

2πn =
1

2
Area(S2)− 1

2
‖ϕ‖2

i.e. ϕ ∈ S2n+1
ρ ⊂ H0(L) = Cn+1, ρ2 = 4π(R2 − n)

Curve of solutions: A constant, ϕ(t) moving orthogonal to
gauge orbit

T =
1

2
‖ϕ̇‖2

Hence induces FS metric on CPn = S2n+1/ ∼



Testing the conjecture

Underlying idea: ϕ→ holomorphic section of fixed L2 norm

On round sphere, can write these down explicitly

Solve Bogomol’nyi equations numerically on round sphere,
investigate limit R2 ↘ n



Numerics

gΣ = Ωdzdz , Ω = 4R2

(1+|z|2)2

Define h = log |ϕ|2
Can use (BOG1) to eliminate A from (BOG2)

∇2h + Ω(1− eh) = 4π
∑

r

δ(z − zr )

Consider case n = 2, z1 = ε ∈ (0, 1), z2 = −ε
Regularize: h(z) = f+(z) + log |z − ε|2 + log |z + ε|2

∇2f+ + Ω(1− |z2 − ε2|2ef+) = 0 (∗)

Repeat in opposite coord patch w = 1/z

∇2f− + Ω(1− |w2 − ε−2|2ef−) = 0 (∗∗)

Solve (∗) on disk |z | ≤ 1, (∗∗) on disk |w | ≤ 1, impose
matching condition on equator |z | = |w | = 1.



Numerics

∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2

∂2f

∂θ2
+ Ω(r)(1− |r2e2iθ − ε±2|2ef ) = 0



Numerics

∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2

∂2f

∂θ2
+ Ω(r)(1− |r2e2iθ − ε±2|2ef ) = 0



Numerics

∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2

∂2f

∂θ2
+ Ω(r)(1− |r2e2iθ − ε±2|2ef ) = 0



Numerics

G : R2nrnθ → R2nrnθ , G (f+, f−) = 0

Newton-Raphson method, nr = nθ = 50

Integral constraint on numerical solutions:

1

2

∫
S2

(1− eh) = 2πn

Holds almost to machine precision (!) (error ∼ 10−15)



Convergence of ϕ



Convergence of ϕ



Convergence of ϕ



Convergence of ϕ



Convergence of γL2

h = log |ϕ|2 = log |z − zr |2 + ar +
1

2
br (z − z r ) +

1

2
br (z − zr ) + · · ·

Defines (0, 1) form b =
∑

r brdz r on Mn\∆, holomorphic

Strachan-Samols localization formula:

ωL2 = π
∑

r

Ω(zr )
i

2
dzr ∧ dz r + iπdb



The two-vortex moduli space

γ = A0(ε)dε2 + A1(ε)σ2
1 + A2(ε)σ2

2 + A3(ε)σ2
3



The two-vortex moduli space

Kähler property ⇒

γ = −A′(ε)

ε
(dε2 + ε2σ2

3) + A(ε)

(
1− ε2

1 + ε2
σ2

1 +
1 + ε2

1− ε2
σ2

2

)
where A : (0, 1)→ (0,∞) is smooth and decreasing

Applies to any SO(3) invariant kähler metric on M2, hence
both γL2 and γFS

γL2 → γFS iff AL2 → AFS



Convergence of γL2 on M2



Vortex polygons

Vortex polygons on a surface of revolution (Ω = Ω(|z |)):
z1 = εe iψ, zr = λr−1z1

Totally geodesic submanifold M0
n
∼= S2 in Mn

Induced metric

γL2 | = F (ε)(dε2 + ε2dψ2)

Can compute F from localization formula



Vortex polygons

Compare with metric induced by Fubini-Study

P(z) = zn − εn ↔ [1, 0, . . . , εn] ∈ CPn

FFS(ε) =

∣∣∣∣ ∂∂ε
∣∣∣∣2 = 4π(R2 − n)

n2ε2n−2

(1 + ε2n)2

Convergence for n = 2 (gΣ = round) follows from previous
work

Even n technically simpler: n = 4



Convergence of γL2| on M0
4



Convergence of γL2| on M0
4



Convergence of γL2| on M0
4



Convergence of γL2| on M0
4



Non-round spheres

Recall informal “derivation” of conjecture works on any
topological sphere

Test this numerically? Deform gS2 = Ω(dr2 + r2dθ2)

Want to keep z 7→ 1/z isometry, SO(2) symmetry

Ω a rational function of r

Ω =
p(r2)

q(r2)

deg(q) = deg(p) + 2, p, q palindromic

Round metric: p = 1, q = 1 + 2x + x2

Squashed metric: p = 1, q = 1 + x2

Ω =
(8/π)R2

1 + r4



Non-round spheres



Convergence of γL2| on squashed spheres: M0
2



Convergence of γL2| on squashed spheres: M0
2



Convergence of γL2| on squashed spheres: M0
2



Convergence of γL2| on squashed spheres: M0
2



Convergence of γL2| on squashed spheres: M0
4



Convergence of γL2| on squashed spheres: M0
4



Convergence of γL2| on squashed spheres: M0
4



Convergence of γL2| on squashed spheres: M0
4



Summary

Baptista-Manton conjecture: for Mn(S2) ≡ CPn, γL2 → γFS

as Area(S2)↘ 4πn

Very strong numerical evidence for n = 2, S2 round

γL2 cohomogeneity 1, specified by a single A : (0, 1)→ R
AL2 → AFS

Good numerical evidence for n = 2, S2 squashed

Good convergence at least on totally geodesic sphere of
“centred” vortex pairs

OK numerical evidence for n = 4, S2 round and squashed

Interesting open question: what happens under Chern-Simons
deformation?


