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What are vortices?

1—— 1 A
i wo = py . 2\2
L= 5DupD"p = JFu P — 2(1—¢[)

DM(P = (8# - iA,u)‘Pv F/w - (9“/\1, - 8VA;¢
B = Fi2, ei = Fo;

Finite energy: ¢ ~ e'X at large r, winding number n € Z.

Finite energy: Di¢ ~ 0 at large r: A = A;dx' ~ dy
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R2 R2 sL

Flux quantization



What are vortices?

@ Vortex: energy minimizer with n =1

© = f(r)e”, A= a(r)de

@ Multivortices: for any n > 2, static solutions
p= fn(r)eine, A= ay(r)do

Stable if A < 1, unstable if A > 1. Unique in both cases

o Critical coupling: A = 1, space of static solutions much more
interesting



Bogomol'nyi argument
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@ Hence E > 7n with equality iff

(Di + D))y = 0 (BOG1)
B = 2(1-l¢P)  (BOGY)



Moduli space

@ Taubes: gauge equivalence classes of solns of
(BOG1),(BOG?2) « unordered collections of n points in
R? = C (not nec. distinct)

@ < unique monic polynomial whose roots are the marked
points

1

Pz)=(z—z)(z—2) - (z—2)=2"4+a1z" "+ -+ a,

° H(al,az,...,an)e(@”

@ Hence the moduli space of n-vortex solutions M,, = C"



Geodesic approximation
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Geodesic approximation
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Geodesic approximation
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Geodesic approximation

Geodesic motion in M, w.r.t. metric v induced by K.E.

In maths literature, v is called the “L2 metric”

Obviously hermitian

J: TpMy, — TyM,, Y(IX,JY) =~v(X,Y)

Kahler form w(X,Y) =~v(JX,Y)
M, is kahler: dw =0

Quantum geodesic motion: i0;V = %A\U



Vortices on compact surfaces

@ Spacetime ¥ x R, n = dt*> — g5
o Why?
o ¥ = T2 =C/A: vortex lattices

e More generally: vortex " gas”
e Maths: equivariant Gromov-Witten theory

@ Need a bit more mathematical sophistication: hermitian line
bundle L over ¥, ¢ a section, A a connexion

1 1 1
E(p,A) = lldagll* + SIIFall* + glI1 = I¢l*]1®

@ Still have flux quantization:

/FA:27TI7
>

n = deg(L)



Vortices on compact surfaces

@ Still have Bogomol'nyi argument: E > 7n with equality iff
Oap = 0 (BOG1)
1
Fa = (- )1 (BOG2)

e Bradlow bound: integrate (BOG2) over X

1
2n = EArea( ) — chsz —~Area(X)

o No vortex solutions if Area(¥) < 4mn.

o If Area(X) = 4mn all solutions have ¢ = 0, *xF4 constant

o If Area(X) > 4mn, vortex solutions « effective divisors on ¥ of
degree n
M, =%"/S,



Dissolved vortices

Note: ¢ =0, xFa = 2mn/Area(X) is always a solution of the
Euler-Lagrange equations

2.2
E= Azr;(ni) + %Area(Z)
Solution not unique (up to gauge) if HY(X) # 0: MJs = T28
(g = genus(X))
Area(X) N\, 4mn: “dissolving” limit
|| becomes small, F4 becomes uniform
g > n studied by Manton and Romao

g = 0 studied by Baptista and Manton



Vortices on a sphere

M, = CP"

Use stereographic coord z on 52

[(z1,22,...,20)] < P(z) = a0+ a1z + - - - + apz"
ap=ap-1=---=0= root(s) at z =0

(ag, a1, ---,an) ~ (Aag, a1, ..., \ap)

Metric ;2 not known exactly, but...

e 6 6 o6 o o

Manton exactly computed the volume of (M, ~,2)!
7"(Area(S?) — 4mn)"
n!

Vol(M,(5?)) =

e valid on any sphere
o shrinks to 0 as Area(S?) \, 47n



The conjecture

o Define R s.t. Area(S?) = 47R?
@ Rescale 7,2 to normalize volume: 7}, = 7,2/(R? — n)

o Conjecture (Baptista, Manton): As R2 \_ n, 72 converges
uniformly to “the” Fubini-Study metric on CP"

@ Originally made for round metric on S - but argument
obviously generalizes to any metric

@ Huge symmetry gain (at most SO(3) — U(n))

@ So what? E.g. quantum energy spectrum should have
unexpected large quasi-degeneracies



What is the FS metric?

@ Unique kahler-einstein metric on CP"

@ In inhomogeneous coords [1,wy, ..., wy]
_ 2idwidw; (2 widwi)(32; widw;)
T I WP (T+wpR

e Hopf fibration C"1 5 §2m+1 ., CP":
7 : (a0, a1,...,an) — [a0,a1, ..., an]

@ 7rs is the unique riemannian metric on CP” such that
7§21l CP" is a riemannian submersion:

o T,5%1 = kerdm, ® H,
o dmp: Hp — Tr(p)CP" is an isometry



@ In dissolving limit ¢ — 0 and A — constant curvature
connexion

@ On L — 52, const curv connexion is unique (up to gauge)
@ Choose and fix such a connexion A, assume ¢ is “small” and
solves (BOG1): B
6A(p =0
o holomorphic w.r.t. holo structure defined by A

@ In a holomorphic trivialization of L over S?\pt

@=ap+az+---+apz"

Remaining gauge freedom: ¢ — e“¢p



@ No such ¢ can solve (BOG2)

1
Fa= 5(1 — |gl?) * 1

Demand only that it solves (BOG2) “on average’
1 1
27tn = EArea(Sz) - EHcsz

ie. e St C HO(L) = C", p? = 4xn(R? — n)
@ Curve of solutions: A constant, ¢(t) moving orthogonal to
gauge orbit

1
T =Z||¢l?
5 l1#ll

Hence induces FS metric on CP" = §27*1/ ~



Testing the conjecture

o Underlying idea: ¢ — holomorphic section of fixed L? norm
@ On round sphere, can write these down explicitly

@ Solve Bogomol'nyi equations numerically on round sphere,
investigate limit R\, n



Numerics

o gy :QdZd?, Q= %

o Define h = log |¢|?
e Can use (BOG1) to eliminate A from (BOG?2)

VZh+Q(l—e") =4r) 6(z—z)

o Consider case n =2, z; = € (0,1), zn = —¢
o Regularize: h(z) = f(z) + log |z — |2 + log |z + ¢

V2 4+ Q1 — |22 - 2Pe) =0 (%)

@ Repeat in opposite coord patch w =1/z

sz, + Q(l — ’W2 — 8_2|2ef7) = O (**)

@ Solve (*) on disk |z| <1, (x*) on disk |w| < 1, impose
matching condition on equator |z| = |w| = 1.



Numerics

@ 10f 1 0%f

1or loT 120200 _ 202 _
8r2+r8r+r2802+Q(r)(1 |ree eTce’) =0

O=m/2




Numerics

@ 10f 1 0%f

1or loT 120200 _ 202 _
8r2+r8r+r2802+Q(r)(1 |ree eTce’) =0
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Numerics

@ 10f 1 0%f

1or loT 120200 _ 202 _
8r2+r8r+r2802+Q(r)(1 |ree eTce’) =0

Y=/ ’




Numerics

G : R?™M _, R2M M6, G(f,f)=0

@ Newton-Raphson method, n, = ng = 50

@ Integral constraint on numerical solutions:

1
/(l—eh):27rn
2 Jo

Holds almost to machine precision (!) (error ~ 1071%)



Convergence of ¢
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Convergence of ¢
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Convergence of ¢

[phi®

thetapi



Convergence of ¢
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Convergence of ;>

1 1
h=log|p|* =log|z — z|* + a, + §b,(E—E,) + Ebr(z—zr) +---

o Defines (0,1) form b= )", b,dz, on M,\A, holomorphic

@ Strachan-Samols localization formula:

wp=my Q(z,)édzr A dZ, + indb



The two-vortex moduli space

A
L/ H

s
SO3)/Z, R

v = Ao(e)de? + A1(e)o? 4 Ax(e)os + As(e)os



The two-vortex moduli space

s
soavz,

@ Kabhler property =

A
9

1-¢2 , 1+4¢€,
(de? + £%03) + A(e) <1+8201 + 1_€2a2>
where A: (0,1) — (0, 00) is smooth and decreasing

o Applies to any SO(3) invariant kahler metric on M, hence
both ~,2 and ~fs
@ Y2 — VFS iff ALZ - AFS



Az (hormalized)
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Vortex polygons

@ Vortex polygons on a surface of revolution (2 = Q(|z])):
nn=ceV z,=\N"1z7
e Totally geodesic submanifold M° = S2 in M,

@ Induced metric
vl = F(e)(de? + 2dy?)

@ Can compute F from localization formula



Vortex polygons

@ Compare with metric induced by Fubini-Study
o P(z) =2z"—¢" < [1,0,...,e" € CP"

2 _
n282n 2

91" _ 2
= 4m(R° — n)i(1 oy

FFS(E) = ‘85

e Convergence for n =2 (gs = round) follows from previous
work

@ Even n technically simpler: n =4
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0
Convergence of 72| on M,
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0
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Non-round spheres

@ Recall informal “derivation” of conjecture works on any
topological sphere

Test this numerically? Deform gs2 = Q(dr? + r>d6?)
Want to keep z — 1/z isometry, SO(2) symmetry

2 a rational function of r

_p(r?)
= q(r?)

deg(q) = deg(p) + 2, p, g palindromic
Round metric: p=1, g = 1 + 2x + x?

Squashed metric: p=1, g =1+ x?

(8/m)R?

QO =
1+r



Non-round spheres
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Convergence of 72| on squashed spheres:
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Convergence of 72| on squashed spheres:
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Convergence of 72| on squashed spheres:
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Convergence of 72| on squashed spheres:
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Convergence of 72| on squashed spheres:
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Convergence of 72| on squashed spheres:

n=4, R=3, squashed metric
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Convergence of 72| on squashed spheres:

n=4, R=2.3, squashed metric
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Convergence of 72| on squashed spheres:
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Baptista-Manton conjecture: for M,(5%) = CP", v,2 — 7Fs
as Area(S?) \, 47n

@ Very strong numerical evidence for n = 2, S round

e 7,2 cohomogeneity 1, specified by a single A: (0,1) - R

o ALz — AFS

e Good numerical evidence for n = 2, S? squashed

e Good convergence at least on totally geodesic sphere of
“centred” vortex pairs

OK numerical evidence for n = 4, S? round and squashed

Interesting open question: what happens under Chern-Simons
deformation?



