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The problem

@ ¢:M— N, (M,g) Riemannian, (N, ®) symplectic

1 % 1 * *
E(@) = 3ll9'0lf =5 [ ¢'orsgo

@ Existence of critical points? Stability? (Index of Hessian)
@ cf Harmonic map problem: (N, h) Riemannian

1
Ep(¢) = EHd(pHZ

@ Joint work with Martin Svensson (Odense). Also systematically
studied by Slobodeanu and some special cases by De Carli and
Ferreira (M Lorentzian)
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B 20 |? d¢ _ d¢
Ers = / Z ox; Z(P <8x,xax, + V(o)

/<j
—1ld 2 et *w2 /V
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Motivation: Faddeev-Skyrme model

@ M=R3N=S2CR3 V:N—[0,)

B = LT[R 4980 (32 20) 4w

/<j

a *
el + Slorol*+ [ vog
M

¢ |?
ox;

@ o > 0 parameter. M = R3, usually take V = 0. Then can set
o =1 WLOG. Interesting (knot solitons) but heavily numerical.



Motivation: Faddeev-Skyrme model

@ M=R3N=S2CR3 V:N—[0,)

B = LT[R 4980 (32 20) 4w

/<j

a *
el + Slorol*+ [ vog
M

¢ |?
ox;

@ o > 0 parameter. M = R3, usually take V = 0. Then can set
o =1 WLOG. Interesting (knot solitons) but heavily numerical.

@ Other M (e.g. M = S°) o, free parameter.



Motivation: Faddeev-Skyrme model

@ M=R3N=S2CR3 V:N—[0,)

B = LT[R 4980 (32 20) 4w

/<j

a *
el + Slorol*+ [ vog
M

¢ |?
ox;

@ o > 0 parameter. M = R3, usually take V = 0. Then can set
o =1 WLOG. Interesting (knot solitons) but heavily numerical.

@ Other M (e.g. M = S°) o, free parameter.

@ Extreme limits: o0 — 0, harmonic map problem
0oL — oo, our problem



Motivation: Faddeev-Skyrme model

@ M=R3N=S2CR3 V:N—[0,)

B = LT[R 4980 (32 20) 4w

/<j

a *
el + Slorol*+ [ vog
M

¢ |?
ox;

@ o > 0 parameter. M = R3, usually take V = 0. Then can set
o =1 WLOG. Interesting (knot solitons) but heavily numerical.
@ Other M (e.g. M = S°) o, free parameter.
@ Extreme limits: o0 — 0, harmonic map problem
0oL — oo, OUr problem
@ Conformally invariant if dim M = 4, infinite dimensional symmetry
group (symplectic diffeos of (N, ®))
Minimizer in generator of 1t4(S?)? ("Pure FS instanton”)
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First and second variation

@ Smooth variation @; of o =@ : M — N.

0 _
° x:a—‘f\tzoe M@~ "TN)

dE(¢r)
at

~ [ o(x.dp(59"w))
t=0 M

@ ¢ critical < d@§d9*®w =0
@ If @ is critical and ® = h(J-,-) = Kahler form on N

d?E(¢:)
at?

t=0
where

LoX = (VX + dp(38d0" 1x0))

(Ins)stability: spectrum of %,
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Coclosed maps

do1d(9*w) =0

@ ¢: M— Nis coclosed if 5¢*® =0
Clearly coclosed = critical

@ Prop: If @ is coclosed it minimizes E in its homotopy class.
Proof: Let ¢ be coclosed and define functional

F(y) = (00, v o).
Then F is a homotopy invariant of y (homotopy lemma). Hence,
ify~ o,
E(9) = ;F(9) = ,F(w) < ool o)
¢)= 5 ¢)= 5 V)= 5 ¢ Y of.
Hence |¢* o] < |[y*ol|. O
@ Eg.Id: N— N, p;: Nx P— N are global minimimizers
@ Cor: If @ is critical and a.e. immersive, then @ minimizes E in its
htpy class
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Two dimensional domains

@ Let M =%, a two-dimensional compact oriented Riemannian
mfd, N = symplectic mfd

@ Thm: ¢ : X — Nis critical < ¢ is coclosed
Proof: ¢*® = 1 for some f € C*(X). Then d¢*® = *df, so
100w = JVT. @ critical =

do(JVf) =0 = ¢*o(JVFf,Vf) =0 = —f|VI[? = 0.

Hence f = constant. U

@ Hence, on ¥, only critical points are global minimizers

@ Cor: Let ¢ : ¥ — S? be critical. Then E(¢) =0 or ¥ = S? and
¢ = Id up to symmetry.
Proof: f is constant. If f = 0, E(¢) = 0. Otherwise, @ has no
critical points, so is a covering map. But 7t (S?) = 0,s0 ¥ = S2
and ¢ is an (area preserving) diffeomorphism. [

@ Physically, rather surprising
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Critical submersions

@ Submersion @ : M — N, T,M = 75 & 4, = kerd@, @ (kerd@y)*
@ F-structure .# € [(End(TM)) s.t. 3 +.7 =0,

0 Xe,
or _ X
‘/X_{ JX X et

where we've used isomorphism d@, : ¢ — To)N
@ If ¢ is Riemannian (meaning doy : J% — To(x)N is an isometry)
then
109w = —div.#

So a Riemannian submersion (M, g) — (N, h,J) is critical iff
div.# is vertical
(In fact, iff harmonic, hence iff a harmonic morphism)
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Critical submersions

@ Example: H < K < G, G compact simple Lie group, G/K
compact Hermitian symmetric space
¢©:G/H— G/Khas TM=q=b", To,yN=p=1t"
I =p, Vx=qNnt
F = ad, for some J € 3(¥)
(Y, div.Z) = LT,(1X, Y], [, X))
Hence div.# vertical

@ Example: G = SU(n), K = S(U(k) x U(n—k)), H=S(U(1)")
Flag(C") — Grk(C") has div.Z =0
Coclosed, hence global minimizer

@ Example: G=SU(2), K=S(U(1) xU(1)),H=e
Hopf : S® — S? has div.Z # 0 (of course)
But it’s still a global minimizer!
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Energy bound M3 — &2

e Amap @: M® — S?is algebraically inessential if [¢*®] = 0.
Such maps are classified up to homotopy by

]
Qo) = 16m2

/AAdA where dA=0¢"®
M

@ Thm: Let ¢ : M® — S? be algebraically inessential. Then

E(g) > 81%/A1Q()

where A4 > 0 is the lowest eigenvalue of the Laplacian coexact
one-forms on M.

Proof: Choose A s.t. dA = ¢*®. WLOG can assume A is
coeaxact (Hodge decomposition). Hence

1 1 A
E(p) = 5(dAdA) = S(A.AA) > T |A%

1 1 1 2
— (A — <— = )
Q0) = 1523 A~ +d4) < T AII4AI < o[ E(0)V2E(@)
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@ Fact: Hopf : S® — S? attains this bound, hence minimizes E in
its homotopy class.

@ Cor: Hopf: S® — S? is a stable critical point of the full FS energy
Ep+ oE for all oo > 1. (Conjectured by Ward, proved
independently by Isobe.)
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1, 1, .
E(0) = ,aldol + S0l + [ Voo
]RZ

@ (=) =@y € V71(0), so fields labelled by integer charge
n=(4n)"" [¢'0
@ Limit & — 0: Again, has infinite dimensional symmetry group
E(gop) = E(9)

for any area-preserving diffeo R? — R?
@ Assume V(¢) = 1U(¢)? where U : S? — [0,°) is smooth.
@ Bogomol'nyi type bound:

0

IN

1 * *
Slle w—*UocszzE(@)—/RZ@ (Vo)

v

E(o) (U)/ ¢'w  equalityiff @'w==xUoc@
R2
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@ Example U(¢) = 1 — @3, for which (U) = 1. Bog egn has charge
1 solution
¢g = (w(r)cos®,w(r)sin®,z(r)),

2(r)=1-2e""2 w(r)=+/1—2(r?2

and “plastic” deformations
@ Higher nsolns? Let X = {p € R? : rankdg, < 2} = ¢ (0,0, 1).
Then @ is an area-preserving surjection

(R®\X, dx A dy) — (S2,9)

where 2 = ®/U. Hence X has no bounded connected
component. Weird...
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@ ...but possible! Area-preserving diffeo
p:(0,0)xR—R?  (x,y)— (logx,xy)
Charge 1 solution of Bog egn

op)(x, x>0
on-{ o7 12

Its C2. Translate it to the right, compose it with area preserving
diffeo

Tm
q:Rx(—E,E)HRZ (x,y) — (xcos?y,tany)

and extend. Get C? charge 1 solution which is constant outside
strip (0,00) x (=3, 5)- Can patch n of these together, for any n.
@ “Moduli space” of minimizers, even for n =1, is very complicated.

@ Cf model on S? with V = 0: very different.



Concluding remarks

@ Variational problem for £ = 1{|¢*|? is mathematically
interesting, and leads to insight into the full FS model on compact
domains.

@ Case M = ¥ 2 finished

e Critical point in generator of 1t4(S?)? What about
m3(S?)\{-1,0,1}?

@ Are there any unstable critical points?

@ Case M = R? with potential is very strange. What about M = R3?



