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The problem

ϕ : M → N, (M,g) Riemannian, (N,ω) symplectic

E(ϕ) =
1
2
‖ϕ

∗
ω‖2 =

1
2

Z
M

ϕ
∗
ω∧∗ϕ

∗
ω.

Existence of critical points? Stability? (Index of Hessian)

cf Harmonic map problem: (N,h) Riemannian

ED(ϕ) =
1
2
‖dϕ‖2

Joint work with Martin Svensson (Odense). Also systematically
studied by Slobodeanu and some special cases by De Carli and
Ferreira (M Lorentzian)



Motivation: Faddeev-Skyrme model

M = R3, N = S2 ⊂ R3, V : N → [0,∞)

EFS =
Z

M

1
2 ∑

i

∣∣∣∣ ∂ϕ

∂xi

∣∣∣∣2

+
α

2 ∑
i<j

ϕ ·
(

∂ϕ

∂xi
× ∂ϕ

∂xj

)2

+V (ϕ)

=
1
2
‖dϕ‖2 +

α

2
‖ϕ

∗
ω‖2 +

Z
M

V ◦ϕ

α > 0 parameter. M = R3, usually take V = 0. Then can set
α = 1 WLOG. Interesting (knot solitons) but heavily numerical.

Other M (e.g. M = S3) α free parameter.

Extreme limits: α→ 0, harmonic map problem
α→ ∞, our problem

Conformally invariant if dimM = 4, infinite dimensional symmetry
group (symplectic diffeos of (N,ω))
Minimizer in generator of π4(S2)? (”Pure FS instanton”)
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First and second variation

Smooth variation ϕt of ϕ0 = ϕ : M → N.

X = ∂ϕ

∂t

∣∣
t=0 ∈ Γ(ϕ−1TN)

dE(ϕt)

dt

∣∣∣∣
t=0

=
Z

M
ω(X ,dϕ(]δϕ

∗
ω))

ϕ critical ⇔ dϕ]δϕ∗ω = 0

If ϕ is critical and ω = h(J·, ·) = Kähler form on N

d2E(ϕt)

dt2

∣∣∣∣
t=0

= 〈X ,LϕX〉L2

where
LϕX =−J(∇

ϕ

]δϕ∗ω
X +dϕ(]δdϕ

∗
ιX ω))

(Ins)stability: spectrum of Lϕ
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Coclosed maps

dϕ]δ(ϕ∗ω) = 0

ϕ : M → N is coclosed if δϕ∗ω = 0
Clearly coclosed ⇒ critical

Prop: If ϕ is coclosed it minimizes E in its homotopy class.
Proof: Let ϕ be coclosed and define functional

F(ψ) = 〈ϕ∗ω,ψ∗
ω〉.

Then F is a homotopy invariant of ψ (homotopy lemma). Hence,
if ψ∼ ϕ,

E(ϕ) =
1
2

F(ϕ) =
1
2

F(ψ)≤ 1
2
‖ϕ

∗
ω‖‖ψ

∗
ω‖.

Hence ‖ϕ∗ω‖ ≤ ‖ψ∗ω‖. �
E.g. Id : N → N, p1 : N×P → N are global minimimizers
Cor: If ϕ is critical and a.e. immersive, then ϕ minimizes E in its
htpy class
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Two dimensional domains

Let M = Σ, a two-dimensional compact oriented Riemannian
mfd, N = symplectic mfd

Thm: ϕ : Σ→ N is critical ⇔ ϕ is coclosed
Proof: ϕ∗ω = f ∗1 for some f ∈ C∞(Σ). Then δϕ∗ω = ∗df , so
]δϕ∗ω = J∇f . ϕ critical ⇒

dϕ(J∇f ) = 0⇒ ϕ
∗
ω(J∇f ,∇f ) = 0⇒−f |∇f |2 = 0.

Hence f = constant. �

Hence, on Σ, only critical points are global minimizers

Cor: Let ϕ : Σ→ S2 be critical. Then E(ϕ) = 0 or Σ = S2 and
ϕ = Id up to symmetry.
Proof: f is constant. If f = 0, E(ϕ) = 0. Otherwise, ϕ has no
critical points, so is a covering map. But π1(S2) = 0, so Σ = S2

and ϕ is an (area preserving) diffeomorphism. �

Physically, rather surprising
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Critical submersions

Submersion ϕ : M → N, TxM = Vx ⊕Hx = kerdϕx ⊕ (kerdϕx)
⊥

F-structure F ∈ Γ(End(TM)) s.t. F 3 +F = 0,

FX =

{
0 X ∈ Vx

JX X ∈Hx

where we’ve used isomorphism dϕx : Hx → Tϕ(x)N

If ϕ is Riemannian (meaning dϕx : Hx → Tϕ(x)N is an isometry)
then

]δϕ
∗
ω =−divF

So a Riemannian submersion (M,g)→ (N,h,J) is critical iff
divF is vertical
(In fact, iff harmonic, hence iff a harmonic morphism)
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Critical submersions

Example: H < K < G, G compact simple Lie group, G/K
compact Hermitian symmetric space

ϕ : G/H → G/K has TxM ≡ q = h⊥, Tϕ(x)N ≡ p = k⊥

Hx ≡ p, Vx ≡ q∩ k

F = adJ for some J ∈ z(k)
〈Y ,divF 〉= 1

2 ∑i〈[Xi ,Y ], [J,Xi ]〉
Hence divF vertical

Example: G = SU(n), K = S(U(k)×U(n− k)), H = S(U(1)n)
Flag(Cn)→ Grk(Cn) has divF = 0
Coclosed, hence global minimizer

Example: G = SU(2), K = S(U(1)×U(1)), H = e
Hopf : S3 → S2 has divF 6= 0 (of course)
But it’s still a global minimizer!
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Energy bound M3 → S2

A map ϕ : M3 → S2 is algebraically inessential if [ϕ∗ω] = 0.
Such maps are classified up to homotopy by

Q(ϕ) =
1

16π2

Z
M

A∧dA where dA = ϕ
∗
ω

Thm: Let ϕ : M3 → S2 be algebraically inessential. Then

E(ϕ)≥ 8π
2
√

λ1Q(ϕ)

where λ1 > 0 is the lowest eigenvalue of the Laplacian coexact
one-forms on M.
Proof: Choose A s.t. dA = ϕ∗ω. WLOG can assume A is
coeaxact (Hodge decomposition). Hence

E(ϕ) =
1
2
〈dA,dA〉=

1
2
〈A,∆A〉 ≥ λ1

2
‖A‖2.

But

Q(ϕ) =
1

16π2 〈A,−∗dA〉≤ 1
16π2 ‖A‖‖dA‖≤ 1

16π2

√
2
λ1

E(ϕ)
√

2E(ϕ).
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Energy bound M3 → S2

Fact: Hopf : S3 → S2 attains this bound, hence minimizes E in
its homotopy class.

Cor: Hopf : S3 → S2 is a stable critical point of the full FS energy
ED +αE for all α≥ 1. (Conjectured by Ward, proved
independently by Isobe.)



Energy bound M3 → S2

Fact: Hopf : S3 → S2 attains this bound, hence minimizes E in
its homotopy class.

Cor: Hopf : S3 → S2 is a stable critical point of the full FS energy
ED +αE for all α≥ 1. (Conjectured by Ward, proved
independently by Isobe.)



Baby Skyrmions ϕ : R2 → S2

E(ϕ) =
1
2

α̂‖dϕ‖2 +
1
2
‖ϕ

∗
ω‖2 +

Z
R2

V ◦ϕ

ϕ(∞) = ϕ0 ∈ V−1(0), so fields labelled by integer charge
n = (4π)−1 R

ϕ∗ω

Limit α̂→ 0: Again, has infinite dimensional symmetry group

E(ϕ◦p) = E(ϕ)

for any area-preserving diffeo R2 → R2

Assume V (ϕ) = 1
2 U(ϕ)2 where U : S2 → [0,∞) is smooth.

Bogomol’nyi type bound:

0 ≤ 1
2
‖ϕ

∗
ω−∗U ◦ϕ‖2 = E(ϕ)−

Z
R2

ϕ
∗(Uω)

E(ϕ) ≥ 〈U〉
Z

R2
ϕ
∗
ω equality iff ϕ

∗
ω = ∗U ◦ϕ
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Baby Skyrmions ϕ : R2 → S2

Example U(ϕ) = 1−ϕ3, for which 〈U〉= 1. Bog eqn has charge
1 solution

ϕG = (w(r)cosθ,w(r)sinθ,z(r)),

z(r) = 1−2e−r2/2, w(r) =
√

1− z(r)2

and “plastic” deformations

Higher n solns? Let X = {p ∈ R2 : rankdϕp < 2}= ϕ−1(0,0,1).
Then ϕ is an area-preserving surjection

(R2\X ,dx ∧dy)→ (S2
×,Ω)

where Ω = ω/U. Hence X has no bounded connected
component. Weird...
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Baby Skyrmions ϕ : R2 → S2

...but possible! Area-preserving diffeo

p : (0,∞)×R→ R2 (x ,y) 7→ (logx ,xy)

Charge 1 solution of Bog eqn

ϕ(x ,y) =

{
(ϕG ◦p)(x ,y) x > 0

(0,0,1) x ≤ 0

It’s C2. Translate it to the right, compose it with area preserving
diffeo

q : R× (−π

2
,
π

2
)→ R2 (x ,y) 7→ (x cos2 y , tany)

and extend. Get C2 charge 1 solution which is constant outside
strip (0,∞)× (−π

2 , π

2 ). Can patch n of these together, for any n.

“Moduli space” of minimizers, even for n = 1, is very complicated.

Cf model on S2 with V = 0: very different.
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Concluding remarks

Variational problem for E = 1
2‖ϕ∗ω‖2 is mathematically

interesting, and leads to insight into the full FS model on compact
domains.

Case M = Σ2 finished

Critical point in generator of π4(S2)? What about
π3(S2)\{−1,0,1}?

Are there any unstable critical points?

Case M = R2 with potential is very strange. What about M = R3?


