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Skyrme model

@ Topological solitons: smooth, spatially localized solutions of
nonlinear field theories, stable for topological reasons

@ Particle-like dynamics (relativistic kinematics, anti-solitons, pair
annihilation, binding, molecules etc.)

e ¢:(M,g)—(Gh) eg. R®— SU2)

©(e0) = e, disjoint homotopy classes labelled by B € 13(G)

Left-invariant Maurer-Cartan form u € Q'(G) @ g

Associated two-form ® € Q?(G) ® g, ©(X, Y) = [u(X),u(Y)]

Skyrme energy

E(9) = / dof? + ¢ of?

Faddeev bound: E(¢) > Egy|B|, unattainable
Degree B minimizer < nucleus of atomic weight B



Skyrme model

@ Numerics
2 - D&h
5: ng 6 D-In‘

Battye and Sutcliffe
@ E/B monotonically decreases e.g. 1.232 (B = 1), 1.096 (B = 8).



Skyrme model

@ Suggests Skyrmions may be able to form a crystal

(pSRS//\HG, /\:{n1X1+n2X2+n3X3:n623}

@ Castillejo et al, Kugler et al, chose A = LZ2, found B = 4
minimizer for each L > 0, minimized over L. Found ¢ with
E/B=1.036.

@ But is this really a crystal? Given any A, B, there exists a degree
B minimizer ¢ : R3 /A — G.

1 fermi

1 degree

1 parsec

For most A, lifted map R® — G clearly isn’t a genuine solution:
artifact of bc’s.



General question

@ Given a minimizer ¢ : RX /A — N of some energy functional
E(¢), when is the lifted map R¥ — N a genuine crystal?

@ Should be critical (in fact stable) with respect to variations of A
too.



Change viewpoint

@ All tori are diffeomorphic through linear maps R¥ — RX.

e Identify them all with M = R¥ /A, the torus of interest. Now mfd
is fixed, but metric depends on A

gn = gjadxidx;, gjj const
@ Vary metric, g; € [(T*"M ©® T*M), go=Euclidean,
€= ath:og; S F(T*M@ T*M)
@ Space of allowed variations E C ['(T*"M ©® T*M),
E = {gjdx;dx; : €; const}
@ Nice k(k + 1)/2 dimensional subspace of space of sections of
rank k(k +1)/2 vector bundle T"M ® T*M
@ Canonically isomorphic to any fibre: E= T,M© T;M



Change viewpoint

@ For any variation of g,

dE((p,g;)

=: (&, S

t=0

where S € [(T*M® T*M) is the stress tensor of ¢.
@ So E is critical for variations of g (equivalently, A), if S L ;2 .
@ Given a two-parameter variation gs; € g + [ of critical g, define

aZE((P7 gs,t)

Hess(g,€) = 35t

s=t=0

where € = ds0s.tl(0,0), € = 919s.tl (0,0)-



Change viewpoint

@ Definitions:
@ An E minimizer ¢ : M — N is a lattice if it's critical with respect to
variations of g in [, thatis, if S 1,2 [E.
o A lattice ¢ is a crystal if, in addition, Hess is non-negative.



Warm-up exercise: the baby Skyrme model

@ ¢:(M? g)— (N,h,®) compact kéhler (e.g. N = S?)

1 1 .,
E(@79)=/A4§!d<p\2+5\<p o + V(@) = B2+ E4 + Eo

@ Stress tensor

1o — g Ly
§ = 5 (51d0f — 2 lo"of + V(9)g — 5¢'h

e E = (g) ®Ey, where Eq = (g)* =traceless SBF’s, spanned by

g =adx? —dx5, & =2dxdx

@ Recall ¢ is a latticeif S L2 E



Warm-up exercise: the baby Skyrme model

_11 2_1 * 312 _1 *
§=5(Gldel"— Slo 0"+ V(9))g— S¢°h

o (s.)x=o0iff | (—;|<p*m12+ v«m) 0

Eo=E4 virial constraint
® S 1,2 Eyiff (p*h,dx? —dx2),2 = (@*h, dxydxz) 2 = 0

2 2

=0

d

/h(d 9 492 y—0
M (an17 (Pan N

¢ “conformal on average”



Warm-up exercise: the baby Skyrme model

@ These conditions are easily checked numerically (unlike varying
Al)
e E.g. Jaykka, JMS, Sutcliffe: N = S?, found a degree 2 lattice with
periods L, Le™ 2 for potential
V(0) = [1— (02 +ig2)° (1 — 93)

Butis it a crystal?



@ Given a two-parameter variation gs ; € g+ I of a lattice (¢, 9),

define 2E( )
~ _ (p7 gS,t
Hess(g,€) = T

s=t=0

~

where € = 059s.tl(0,0)» € = 9t9s.t](0,0)-

@ Notation:
(A-B)(X,Y) = Y AX,E)B(E,Y)
i
S = as's(gs,0)|s:o
Hess(g,e) = g /(S(Qs)ﬁs)gsVO'gs
ds s=0’/M

C (8E)— (E.58) e (SBoE)e +;/M<S,£><g,€>volg

= <SEL2 2(\S£L2



Hess(€,€) = (S,€),2 —2(€,S-€) 2
@ Baby-Skyrmion lattice:
1.1 2 1 * 112 1 *
= —(5|def2 -~ V(9))g— ~¢*h
§ = S(5ldolg—Sle ol +V(e))g— S0
. 1 1 1 ~
=8 = Ag+5(5ldelg— 590+ V(e)E
@ g,ecky:
~ 1 ~
Hess(8,e) — E(52—154—150)@,e>—2/<a,s-a>
M
1 N o~ *
= —§(E2—E4—Eo)<£,£>+/M<£,(p h-¢)

— —%Ez@ g) + (g, </ (p*h) -€) virial constr.
M

;
= 5k (€,€) + (€,(E2g)-€)  conformal on avg.



g € Fo: Hess(g, ) ng(As

oE:g:S:kg,seEo.

HeSS(g7£) = <}\’978>L2 _2<S'g78>L2 =0

@ Hess(g,g) > 0 (Derrick scaling)
@ Hence every baby Skyrmion lattice is a crystal!
@ Only need to check

@ Virial constraint (E; = Eo)
@ Conformal on average



Exact baby Skyrme crystals

e Consider baby Skyrme model with V(¢) = 1 U(¢)?
@ Recall Bogomol'nyi bounds for ¢ : M? — S2,
1 2
E.= Lldol* > 4nn
equality iff @ holomorphic
1 «
Es+E=(o o|F +[|Ucol?) > 4n(U)n,
equality iff " = xUo @

@ Given any lattice A\, there is a degree 2 holomorphic map
@:C/\N— §2 = CU{} satisfying

(@) =40°— gop— g3 = Ps(p)

@ For any holomorphic map ¢ = W(z),
o AW 1
PO Wiz



Exact baby Skyrme crystals

@ Hence, if we choose

_ 8|P(W)?
= iy

model has an exact solution ¢ = @(z) on C/A.
@ Automatically a crystal

e Lattice A = four vacua: =, P; '(0).

@ Question: Given V with four vacua, can we use the corresponding
elliptic function to predict A?



The Skyrme “crystal”

o g:M— G=S5U(2)
1 2 1 2
E—E+E= [ Jldof+ [
M2 2

where Q = ¢*w € Q3(M) ® g.
@ Stress tensor S = ;(|d@[? +[Q*)g+ 3(Q-Q—@*h)
@ Lattice <—= S 1,2 E

(S8,9)2=0 <= E,=E, Virial constraint
(p*h—Q~Q 12 Eg

@ DefineSBF A: T, Mx T,M — R,
A(X,Y) = / ("h—Q-Q)(X, Y)voly
M

o Lattice < Virial, A = ¢yg



The Skyrme “crystal”

@ Skyrme “crystal” of [Castillejo/Kugler] et al, has A = LZ® and is
invariant under

S1: (X1 7X27X3) = (7X‘| 7X27X3)a ((pO»(p‘la(va(PS) = ((P07*(p1 7(P27(P3)
Sp 1 (X1,X2,X3) — (X2, X3,X1), (Do, P1,92,93) — (Po, P2, P3,¢1)

They checked it satisfies virial constraint
@ 5si,Sp generate group K of order 24

@ A invariant under induced action of K on TyM© T, M
1 00 0 0 0] [0 01 0 0 0]
010 0 0 O 1 0 0 0 0O
~ 001 0 0 0] ~ 01 0000
"= 1000 -1 0 0’2 000010}/
000 O —-10 000 0O {1
(000 0 0 1 | 000 1 0 0

w.r.t. dx?, dx3, dx2, dx; dxa, dxi dxa, dxpdxs



The Skyrme “crystal”

@ Decompose K-rep on T;M® T, M into irreps, count copies of
trivial rep

conj.class | e (s182)° s1 (s152)%s1 s si1s2 S5 sis5
size 1 1 3 3 4 4 4 4

~

X 6 6 2 2 0O O 0 0

@ Hence ’
™y ==Y A(k)x1=1
L=

@ Certainly g is K invariant. Hence A = ¢yg. Skyrme “crystal” is (at
least) a lattice.(Same reason Ohm’s law holds for copper!)

@ Hess > 0? Hess € E* ® E* also invariant under induced K action

<XIE* OE* ’ Xtriv> -9



The Skyrme “crystal”

@ Define Hy,H, € E* © E*

Hi(g,g9) = 1, Hi(€,e)=0 ifeck
Hy(e,e) = tr(e-€)

These are invariant under K (actually, under all isometries of M)
@ Hence K-invariance implies

Hess = c1Hy + coHo
so it suffices to check

Hess(g,9) > 0 [true, by Derrick scaling]
Hess(e,e) > 0  foranysingle € € Eg

@ Fairly long calculation:

Hess(2dx1 dxo, 2dx4 ng) = HQ23HE2 + HQ31 Hiz >0

@ So the Skyrme “crystal” is a crystal!



Concluding remarks

@ Gave necessary conditions for a spatially periodic soliton solution
to be a soliton crystal
@ Conditions formulated in terms of stress tensor S (first variation of
E w.r.t. g) and hessian Hess (second variation)
e Lattice (critical) if S L2 ECT(T*"M® T*M)
o Crystal (stable) if Hess > 0
@ Baby Skyrmions:
o Lattice iff satisfies virial constraint and is “conformal on average”
o Lattice = crystal (stability is automatic)!
@ Skyrme “crystal”:

Lattice iff virial constraint and A = [},(¢*h—Q-Q) = cog
@ Numerical work already showed virial constraint holds

e Symmetry implies A = cyg and Hess > 0

e Skyrme “crystal” is a crystal.



Concluding remarks

@ Conditions are numerically accessible. E.g. for a periodic Skyrme
field A(d1,02) = 0 iff

/TS (tr Lilo+ tl’[L1 , L3] [Lg, L3])dX1 dxodxs =0

where Li = @ 19;¢
@ Classify A such that Ky equivariance and Virial = crystal?
@ Other possibilities: partial periodicity 72 x R?
e Hexagonal Skyrmion sheet (Battye and Sutcliffe)
e Generalized Skyrmion multisheets (Silva Lobo and Ward)



