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The question

@ When is a spatially periodic minimizer ¢ : RK /A — N of a
field-theoretic energy functional E() a crystal (periodic array of
solitons in stable equilibrium)?

@ E.g. Skyrme model: Castillejo et al, Kugler et al, chose A = LZ3,
found B = 4 minimizer for each L > 0, minimized over L. Found ¢
with E/B = 1.036.

@ But is this really a crystal? Given any A, B, there exists a degree
B skyrme minimizer on T3 = R3/A.

1 fermi

1 degree

I parsec
For most A, lifted map R® — N clearly isn’t a genuine solution:
artifact of bc’s.

@ To be a genuine crystal, E should be critical (in fact stable) under
variations of A too.



A reformulation

All tori are diffeomorphic through linear maps R¥ — RX.
Identify them all with M = R¥ /A, torus of interest.
{Vary A fixed g} «—— {Fix Avary g}

g€ {)_ gjdxax; : gj const}

if
Vary metric, g; € ' (T*"M ® T*M), go=Euclidean,

0
a—gtt cek:= {Zs,-jdx,-dx,- : gj const}
t=0

Nice k(k+ 1)/2 dimensional subspace of space of sections of
rank k(k +1)/2 vector bundle T"M ® T*M

e Canonically isomorphic to any fibre: E= T;M© T;M

o Inherits metric (€,€)r = (€(0),€(0))4



The payoff

@ For any variation of g,

dE((P,g,)

dt = <8, S>L2

t=0

where S € [(T*M® T*M) is the stress tensor of ¢.
@ So E is critical for variations of A iff S 1,2 E.
@ Given critical g, define symmetric bilinear form
Hess:ExE — R

as follows: for any two-parameter variation gs; € g + E,
generated by € = dss¢|(0,0), € = 919s.t(0.0)

O*E(9, 5s.1)

Hess(g,¢) := Yoy

s=t=0

@ Stable under variations of A if Hess > 0.



Terminology

@ Definitions:

e An E minimizer ¢ : M — N is a lattice if S L » E.
e An E minimizer ¢ : M — Nis a crystal if S | ;> E and Hess > 0.



Warm-up exercise: the baby Skyrme model

e ¢:(M? g)— (N,h,®) compact kéhler (e.g. N = S?)

1 1,
E(0.0)= [ 3100F + 5190+ V(0) = Ex + Ev+ o

11 1 1
® Stress tensor S = _(|do|* — Z|¢ 0" + V(¢))g — 5¢"h
o E = (g) ®Eo, where Eq = (g)* =traceless SBF’s

o (.90 =0 [ (~Fl0'0R+ V(@) ~0

Eo=E4 virial constraint
® S 1,2 Eyiff (p*h,dx? —dx2),2 = (@*h, dxydxz) 2 = 0O

2
=0

2
9
- ‘d(PE

: d
Ju ‘d(PW
¢ “conformal on average”

Juh(dos-, do2-) =0



Warm-up exercise: the baby Skyrme model

@ These conditions are easily checked numerically (unlike varying
N directly, cf Karliner and Hen)

e E.g. Jaykka, JMS, Sutcliffe: N = S?, found a degree 2 lattice with
periods L, Le™/3 for potential

V(9) = [1 — (@2 +ig2)° (1 — 93)

Checked [virial constraint] and [conformal on average]
numerically.

@ Butis it a crystal (Hess > 0) ?



@ Given a two-parameter variation g ; € g+ IE of a lattice, with
€ = 059s.tl(0,0)» € = 9t9s.t|(0,0) define

82E((p, gS,I)
dsot |, o
d

gs| ], (8(00)esha ol

. - 1 N
- <S,£)Lz—2<e,8-8>Lz+§/ (5,€)(g,E)vol,
M
= <S €)1 — 2(\ S- 8 12

Hess(g,e) =

where

S = asS(gs,O)|s:0
(A-B)(X,Y) = ZA(X,E;)B(E;,Y) (noteg-A=A.-g=A)



Hess(€,€) = (S,€) 2 —2(€, S €) 2
@ Baby-Skyrmion lattice:
s = L0100k~ Slo'ol3+ V(e)g— Se'h
=& = Agt (5ld0— e+ V(o)E
@ g,ecky:
Hess(E,e) — %(Eg—E4+E0)<§,8>E—2<§,S-£>Lz
= —%(Ez—E4+EO)@8>E+<§a<P*h'€>L2

1 1_ .
= —§E2(§,8>1E+ (€,(E29) -€)r = §E2<8>8>]E



ee=g=S=MAg,ecEg:

HeSS(g,a) = <}\’978>L2 _2<S'g78>L2 =0

Hess(g,g) > 0 (Derrick scaling)

Hence every baby Skyrmion lattice is a crystal!
Only need to check

@ Virial constraint (E; = Eo)

@ Conformal on average

Weird fact (Ward?): given any A can construct V such that model
has a holomorphic energy minimizer. Automatically a crystal.



The Skyrme “crystal”

@ 9:M— G(T®— SU(2))
1 2 1 * 112
E=E+E = [ Sldof+ |90
M2 2
where
we(G)eg  oX,Y)=[u(X),u(Y)]

and u is the left Maurer-Cartan form.
o LetQ=0*we Q¥(M)®g.
@ Stress tensor

1 1 .
§= (10 +1Q)g+ (-2 0"h)

o Lattice «<— S 1,2 E



The Skyrme “crystal”

@ Again decompose E = (g) ® Ey:

(8,9)12=0 <= E, =E,4 Virial constraint
S1lpEy <= ¢h—Q-Q1,:Eg (%)

@ Define Ac MR T;M=E,

A(X,Y) = / (9"h—Q-Q)(X*, y*')vol,
M

0 (x) <= AlpEy <= A=Ag



The Skyrme “crystal”

@ Skyrme “crystal” of [Castillejo/Kugler] et al, has A = LZ° and is
invariant under

st (X1, X2,X3) = (—Xx1,%2,X3), (@0, P1,92,93) — (Qo, —P1, P2, P3)

Sz (x1,X2,x3) = (X2, X3, 1), (Qo,P1,92,93) — (Po, P2,93,91)
They checked it satisfies virial constraint

@ 51,52 generate group K of order 24

@ A invariant under induced action of K on E
@ Representation theory: dim(EX) = 1:

conj.class | e (s152)° s1 (81%2)%s1 sz si1s2 S5 sS85

size 1 1 3 3 4 4 4 4
xE 6 6 2 2 0 0 0 O
o™ =— Y 1t (k) x1=1
K| &

@ Certainly g is K invariant. Hence A = Ag. Skyrme “crystal” is (at
least) a lattice.(Same reason Ohm’s law holds for copper!)



The Skyrme “crystal”

@ Hess > 0? Hess € E* ® E* also invariant under induced K action
<X]E*®E* Xtriv> -9

@ Define Hy,H, € E* © E*
Hi(g,9) = 1, Hi(€,e)=0 ifec
Hy(e,e) = tr(g-€)

These are invariant under K (actually, under all isometries of M)
@ Hence K-invariance implies Hess = ¢ Hy + coHos0 it suffices to
check

Hess(g,9) > 0  [true, by Derrick scaling]
Hess(e,e) > 0  forany single € € Eq

@ Fairly long calculation:
Hess(2dx1 dxo, 2dx4 ng) = ”QZSHiZ + HQ31 Hig >0

The Skyrme “crystal” is a crystal!



Concluding remarks

@ Gave necessary conditions for a spatially periodic soliton solution
to be a soliton crystal
@ Conditions formulated in terms of stress tensor S (first variation of
E w.r.t. g) and hessian Hess (second variation)
e Lattice (critical) if S L2 ECT(T*"M® T*M)
o Crystal (stable) if S 1,2 [E and Hess > 0
@ Baby Skyrmions:
o Lattice iff satisfies virial constraint and is “conformal on average”
o Lattice = crystal (stability is automatic)!
@ Skyrme “crystal”:
Lattice iff virial constraint and A = [,(¢*h—Q-Q) =Ag
o Numerical work already showed virial constraint holds
e Symmetry implies A = Ag and Hess > 0
e Skyrme “crystal” is a crystal.



Concluding remarks

@ Conditions are numerically accessible. E.g. for a periodic Skyrme
field A(d1,92) = 0 iff

/TS (tr Lilo+ tl’[L1 , L3] [Lg, L3])dX1 dxodxs =0

where L; = @ 10,
@ Looks familiar...



Concluding remarks
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Abstract

New integral identities satisfied by topological solitons in a range of classieal field
theories are presented. They are derived by considering independent length 1 lings
in orthopgonal directions, or equivalently, from the conservation of the stress tensor.
These identities are refinements of Derrick’s theorem.




Concluding remarks

@ Top of page 4...

and rotating this by 45° in the (x', 2%) plane gives
1 1 3 .
—5 T (BiRa) — £ T ((Ru. Ry)[Ra, Rs)) o d'x =0, (2.10)
which is a further novel identity. Two more identities are obtained by permuting the

@ ...even when | think I've thought up something Nick hasn't, it turns
out he (kind of) has!



