Soliton crystals

Martin Speight, University of Leeds
Joint work with Derek Harland and Paul Leask

Topological solitons

- Smooth, spatially localized lump-like solutions of classical nonlinear field theories
- Stable due to topology
- Particle like: relativistic kinematics, scattering, radiation, anti-solitons
- Naïve dream: maybe elementary particles really are solitons!
- Prosaic reality: probably not, but the same/similar structures are ubiquitous in condensed matter systems
- Kinks, lumps, vortices, monopoles, Skyrmions

Skyrmions

$$
\begin{aligned}
& \varphi: \mathbb{R}^{3} \rightarrow S^{3} \\
& \varphi(\infty)=(1,0,0,0)
\end{aligned}
$$

T.H.R. Skyrme

Extension $\varphi: \mathbb{R}^{3} \cup\{\infty\} \rightarrow S^{3}$
Topological charge $B=\operatorname{deg} \varphi \in \mathbb{Z}$
$B=\int_{\mathbb{R}^{3}} \varphi^{*} \operatorname{vol}_{S^{3}}$

Picture credits: Skyrme portrait, Master \& Fellows, Trinity College, Cambridge University Skyrmions: Carlos Naya and Paul Sutcliffe

Baby Skyrmions

$\varphi: \mathbb{R}^{2} \cup\{\infty\} \rightarrow S^{2}$
Topological charge $n=\operatorname{deg} \varphi \in \mathbb{Z}$

$$
n=\int_{\mathbb{R}^{2}} \varphi \cdot\left(\frac{\partial \varphi}{\partial x_{1}} \times \frac{\partial \varphi}{\partial x_{2}}\right)
$$

Baby Skyrmions

Isorotated hedgehog

Picture credit: Karin Everschor-Sitte and Matthias Sitte

Interskyrmion forces

- Linearize model about vacuum

$$
\begin{gathered}
\varphi=(0,0,1)+\left(\varepsilon_{1}, \varepsilon_{2}, 0\right)+\cdots \\
\varepsilon_{1}=-q \partial_{x_{1}} K_{0}(r)+\cdots \quad \varepsilon_{2}=-q \partial_{x_{2}} K_{0}(r)+\cdots
\end{gathered}
$$

- Solution of Klein-Gordon model with static sources

$$
\begin{gathered}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \varepsilon \cdot \partial^{\mu} \varepsilon-\frac{1}{2}|\varepsilon|^{2}+\kappa_{i} \varepsilon_{i} \\
\kappa_{1}=(q, 0) \cdot \nabla \delta(x) \quad \kappa_{2}=(0, q) \cdot \nabla \delta(x)
\end{gathered}
$$

- Orthogonal pair of scalar dipoles

Interskyrmion forces

- At long range, skyrmion interactions should approach forces between point particles carrying an orthogonal pair of scalar dipoles

$$
E_{i n t}=q^{2} K_{0}(R) \cos \left(\theta_{1}-\theta_{2}\right)
$$

- Attractive channel:

Interskyrmion forces

- Skyrmions bind together to form "molecules"

- $n \rightarrow \infty$ Crystals?

Soliton crystals

- Usual approach: choose a plausible period lattice and topological charge per unit cell n.

$$
\Lambda=\left\{n_{1} \mathbf{E}_{1}+n_{2} \mathbf{E}_{2}:\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}\right\}
$$

- Minimize E over all degree n fields with $\varphi(\mathbf{x}+\mathbf{v})=\varphi(\mathbf{x})$ for all $\mathbf{v} \in \Lambda$
- Then minimize w.r.t. cell area
- Equivalent to putting model on (compact) torus $T_{\Lambda}^{2}=\mathbb{R}^{2} / \Lambda$

Soliton crystals

- Problem: once you put the model on a compact domain, every homotopy class of maps will have an energy minimizer
- Consider

1 parsec

- Is the $n=2$ (say) minimizer on this torus a soliton crystal?
- Clearly not: artefact of the boundary conditions.
- We should minimize E w.r.t. field φ and period lattice Λ

Soliton crystals

- Define new coordinates $\left(x_{1}, x_{2}\right)=: X_{1} E_{1}+X_{2} E_{2}$
- $\left(T_{\Lambda}^{2}, g_{E u c}\right)$ is equivalent to ($\left.\mathbb{T}^{2}, g\right)$ with metric $g=g_{i j} \mathrm{~d} X_{i} \mathrm{~d} X_{j}, g_{i j}=\mathbf{E}_{i} \cdot \mathbf{E}_{j}$
- Varying Λ equivalent to fixing torus $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ and varying metric g

Varying the lattice $=$ varying the metric

- Given a smooth curve g_{t} of metrics with $\left.\partial_{t}\right|_{t=0} g_{t}=\varepsilon$,

$$
\left.\frac{d}{d t}\right|_{t=0} E\left(\varphi, g_{t}\right)=\langle S(\varphi, g), \varepsilon\rangle_{L^{2}}
$$

where $S(\varphi, g)$ is the stress tensor

- Condition for $\varphi: T_{\Lambda}^{2} \rightarrow S^{2}$ to be critical for variations of Λ :

$$
\langle S(\varphi, g), \varepsilon\rangle_{L^{2}}=0
$$

for all symmetric parallel bilinear forms ε

- $\varepsilon=g$: Virial constraint $E_{0}=E_{4}$
- $\varepsilon \perp g: \varphi$ must be "conformal on average"

More explicitly...

- Define area $A=\sqrt{\operatorname{det} g}$ and $s=\sqrt{\operatorname{det} g} g^{-1}$ (note that $\operatorname{det} s=1$)
- For any fixed $\varphi: \mathbb{T}^{2} \rightarrow S^{2}$,

$$
E(\varphi, g)=\frac{1}{2} \operatorname{tr}(H(\varphi) s)+\frac{C_{4}(\varphi)}{A}+C_{0}(\varphi) A
$$

where

$$
H_{i j}(\varphi)=\int_{\mathbb{T}^{2}} \frac{\partial \varphi}{\partial X_{i}} \cdot \frac{\partial \varphi}{\partial X_{j}}, \quad C_{4}(\varphi)=\frac{1}{2} \int_{\mathbb{T}_{2}}\left|\partial_{1} \varphi \times \partial_{2} \varphi\right|^{2}, \quad C_{0}(\varphi)=\int_{\mathbb{T}_{2}} V(\varphi)
$$

- This has a unique global minimum at

$$
A=\sqrt{C_{0} / C_{4}}, \quad s \| H^{-1}
$$

Numerical method

1. Choose an initial guess (φ, g)
2. Minimize $E(\varphi, g)$ w.r.t. φ with g fixed by "Arrested Newton Flow"
3. Compute $H\left(\varphi_{\min }\right), C_{4}\left(\varphi_{\min }\right), C_{0}\left(\varphi_{\min }\right)$
4. Construct $g=\lambda H$ with area $\sqrt{C_{0} / C_{4}}$
5. Go to 2

Arrested Newton Flow

- Discretize space, so $\varphi \in\left(S^{2}\right)^{N}$

Gradient

Arrested Newton Flow

- Discretize space, so $\varphi \in\left(S^{2}\right)^{N}$

$$
\varphi_{t}=-\nabla E(\varphi)
$$

Gradient

Arrested Newton Flow

- Discretize space, so $\varphi \in\left(S^{2}\right)^{N}$

$$
\varphi_{t}=-\nabla E(\varphi)
$$

Arrested Newton Flow

- Discretize space, so $\varphi \in\left(S^{2}\right)^{N}$

$$
\varphi_{t t}=-\nabla E(\varphi)
$$

Arrested Newton Flow

- Discretize space, so $\varphi \in\left(S^{2}\right)^{N}$

$$
\begin{aligned}
& \varphi_{t t}=-\nabla E(\varphi) \\
& \varphi_{t}\left(t_{*}\right)=0
\end{aligned}
$$

Arrested Newton Flow

- Discretize space, so $\varphi \in\left(S^{2}\right)^{N}$

$$
\begin{aligned}
& \varphi_{t t}=-\nabla E(\varphi) \\
& \varphi_{t}\left(t_{*}\right)=0
\end{aligned}
$$

The results: $V(\varphi)=1-\varphi_{3}$

- Optimal crystal has $n=2$ per unit cell
- Equianharmonic period lattice

$$
\Lambda=\operatorname{span}\left\{L, L e^{\frac{i \pi}{3}}\right\}
$$

- Already known (Hen and Karliner 2008)
- But what if we change V ?

$V(\varphi)=\varphi_{3}^{2}$

$$
n=1 \text { isolated skyrmion }
$$

Optimal crystal

Square, $n=2$ per unit cell

Two topological energy bounds:

$$
\begin{aligned}
E_{2}(\varphi) & =\frac{1}{2} \int_{\Sigma}\left|\varphi_{x}\right|^{2}+\left|\varphi_{y}\right|^{2} \\
& =\frac{1}{2} \int_{\Sigma}\left|\varphi_{y}-\varphi \times \varphi_{x}\right|^{2}+\int_{\Sigma} \varphi \cdot\left(\varphi_{x} \times \varphi_{y}\right) \\
& =\frac{1}{2} \int_{\Sigma}\left|\varphi_{y}-\varphi \times \varphi_{x}\right|^{2}+2 \pi n
\end{aligned}
$$

Hence $E_{2}(\varphi) \geq 2 \pi n$ with equality iff

$$
\begin{aligned}
\varphi_{y} & =\varphi \times \varphi_{x} \\
d \varphi \circ J_{\Sigma} & =J_{S^{2}} \circ d \varphi
\end{aligned}
$$

that is, $\varphi: \Sigma \rightarrow S^{2}$ is holomorphic

Two topological bounds

$$
\begin{aligned}
E_{4}(\varphi)+E_{0}(\varphi) & =\frac{1}{2} \int_{\Sigma}\left|\varphi^{*} \operatorname{vol}_{S^{2}}\right|^{2}+U(\varphi)^{2} \\
& =\frac{1}{2} \int_{\Sigma}\left(* \varphi^{*} \operatorname{vol}_{S^{2}}-U(\varphi)\right)^{2}+\int_{\Sigma} \varphi^{*}\left(U \text { vol }_{S^{2}}\right) \\
& =\frac{1}{2} \int_{\Sigma}\left(* \varphi^{*} \operatorname{vol}_{S^{2}}-U(\varphi)\right)^{2}+4 \pi\langle U\rangle n
\end{aligned}
$$

Hence, $\left(E_{4}+E_{0}\right)(\varphi) \geq 4 \pi\langle U\rangle n$ with equality iff

$$
\begin{aligned}
\varphi^{*} \operatorname{vol}_{S^{2}} & =U(\varphi) \operatorname{vol}_{\Sigma} \\
\varphi^{*}\left(\operatorname{vol}_{S^{2}} / U\right) & =\operatorname{vol}_{\Sigma}
\end{aligned}
$$

that is, $\varphi:\left(\Sigma, \operatorname{vol}_{\Sigma}\right) \rightarrow\left(S^{2}, \operatorname{vol}_{S^{2}} / U\right)$ is volume preserving

(C. Adam, T. Romanczukiewicz, J. SanchezGuillen and A. Wereszczynski, J.M. Izquierdo, M.S. Rashi d, B. Piette and W.J. Zakrzewski, D.H. Tchrakian, M. de Innocentis and R.S. Ward...
.....and me)

Cooking up a potential

Stereographic coordinate on S^{2}
Weierstrass P-function:

Degree $n=2$ holomorphic map
$\varphi_{\wp}: \Sigma \rightarrow S^{2}$
$z \mapsto W(z)=\wp(z)$

$$
\wp^{\prime}(z)^{2}=4\left(\wp(z)-e_{1}\right)\left(\wp(z)-e_{2}\right)\left(\wp(z)-e_{3}\right)
$$

Cooking up a potential

- For any holomorphic map $\varphi: z \mapsto W(z)$,

$$
\varphi^{*} \operatorname{vol}_{S^{2}}=\frac{4\left|W^{\prime}(z)\right|^{2}}{\left(1+|W(z)|^{2}\right)^{2}} \frac{i}{2} d z \wedge d \bar{z}
$$

- Define

$$
U(W)=\frac{16\left|\left(W-e_{1}\right)\left(W-e_{2}\right)\left(W-e_{3}\right)\right|}{\left(1+|W|^{2}\right)^{2}}
$$

$V=U^{2} / 2$ is a smooth potential on S^{2} with exactly 4 vacua

- φ_{\wp} is holomorphic and satisfies $\varphi_{\wp}^{*} \mathrm{vol}_{S^{2}}=\left(U \circ \varphi_{\wp}\right) \mathrm{vol}_{\Sigma}$
- So $E\left(\varphi_{\wp}, g_{\Lambda}\right)=2 \pi n(1+2\langle U\rangle)$ the least possible energy among all degree 2 maps $\mathbb{T}^{2} \rightarrow S^{2}$ and all metrics on \mathbb{T}^{2} !
- φ_{\wp} is certainly a soliton crystal for the model with potential $V=U^{2} / 2$

Cooking up a potential

- This holds on any torus \mathbb{C} / Λ !

- There is a choice of potential $V(\varphi)$ for which the baby Skyrme model has a skyrmion crystal with the above period lattice

The adult Skyrme model

- $\varphi: \mathbb{R}^{3} \rightarrow S^{3}=S U(2)$

$$
\begin{aligned}
E & =\int_{\mathbb{R}^{3}} \frac{1}{2}|d \varphi|^{2}+\frac{1}{2}\left|\varphi^{*} \Omega\right|^{2}+m_{\pi}^{2}\left(1-\varphi_{0}\right) \\
& =\operatorname{Tr}\left(H \Sigma^{-1}\right)+\operatorname{Tr}(F \Sigma)+\frac{C_{0}}{\operatorname{det} \Sigma}
\end{aligned}
$$

where $\quad \Sigma=\frac{g}{\sqrt{\operatorname{det} g}}$.

- $m_{\pi}=0$: Kugler-Shtrikman
crystal of half-skyrmions ($B=4$)
- What if $m_{\pi}>0$?

Bifurcation!

