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Topological solitons

• Smooth, spatially localized lump-like solutions of classical nonlinear 
field theories

• Stable due to topology

• Particle like: relativistic kinematics, scattering, radiation, anti-solitons

• Naïve dream: maybe elementary particles really are solitons!

• Prosaic reality: probably not, but the same/similar structures are 
ubiquitous in condensed matter systems

• Kinks, lumps, vortices, monopoles, Skyrmions



Skyrmions T.H.R. Skyrme
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Skyrmions: Carlos Naya and Paul Sutcliffe



Baby Skyrmions



Baby Skyrmions

Picture credit:  Karin Everschor-Sitte and Matthias Sitte

Hedgehog

Isorotated hedgehog



Interskyrmion forces

• Linearize model about vacuum

• Solution of Klein-Gordon model with static sources

• Orthogonal pair of scalar dipoles

Piette, Schroers and Zakrzewski, Z.Phys. C65 (1995) 165-174



Interskyrmion forces
• At long range, skyrmion interactions should approach forces between 

point particles carrying an orthogonal pair of scalar dipoles

• Attractive channel:

𝐸𝑖𝑛𝑡 = 𝑞2𝐾0(𝑅) cos(𝜃1 − 𝜃2)



Interskyrmion forces

• Skyrmions bind together to form “molecules”

n=10 n=30

• 𝑛 → ∞ Crystals?



Soliton crystals



Soliton crystals

• Problem: once you put the model on a compact domain, every 
homotopy class of maps will have an energy minimizer

• Consider

• Is the 𝑛 = 2 (say) minimizer on this torus a soliton crystal?

• Clearly not: artefact of the boundary conditions.

• We should minimize E w.r.t. field 𝜑 and period lattice Λ



Soliton crystals

• Define new coordinates 𝑥1, 𝑥2 =:𝑋1𝐸1 + 𝑋2𝐸2

• is equivalent to               with metric

• Varying Λ equivalent to fixing torus                      and varying metric 𝑔



Varying the lattice = varying the metric



More explicitly…



Numerical method

1. Choose an initial guess 𝜑, 𝑔

2. Minimize 𝐸(𝜑, 𝑔) w.r.t. 𝜑 with 𝑔 fixed by ``Arrested Newton Flow”

3. Compute 𝐻 𝜑𝑚𝑖𝑛 , 𝐶4 𝜑𝑚𝑖𝑛 , 𝐶0 𝜑𝑚𝑖𝑛

4. Construct 𝑔 = 𝜆𝐻 with area 𝐶0/𝐶4

5. Go to 2



Arrested Newton Flow
• Discretize space, so 𝜑 ∈ (𝑆2)𝑁
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The results: 𝑉 𝜑 = 1 − 𝜑3

• Optimal crystal has 𝑛 = 2 per unit cell
• Equianharmonic period lattice

Λ = 𝑠𝑝𝑎𝑛{𝐿, 𝐿𝑒
𝑖𝜋

3 }
• Already known (Hen and Karliner 2008)
• But what if we change 𝑉?



𝑉 𝜑 = 𝜑3
2

𝑛 = 1 isolated skyrmion

Energy density 𝜑3

(J. Jaykka, J.M. Speight)

Optimal crystal

Square, 𝑛 = 2 per unit cell

(P. Leask)



Two topological energy bounds:

(Lichnerowicz)



Two topological bounds

(C. Adam, T. Romanczukiewicz, J. Sanchez-
Guillen and A. Wereszczynski,
J.M. Izquierdo, M.S. Rashi
d, B. Piette and W.J. Zakrzewski, D.H. 
Tchrakian, M. de Innocentis and R.S. Ward…

…..and me)



Cooking up a potential

Stereographic coordinate on 𝑆2

Weierstrass P-function:

Degree 𝑛 = 2
holomorphic map



Cooking up a potential



Cooking up a potential

• There is a choice of potential 𝑉 𝜑 for which the baby Skyrme model 
has a skyrmion crystal with the above period lattice



The adult Skyrme model

• 𝑚𝜋 = 0: Kugler-Shtrikman
crystal of half-skyrmions (𝐵 = 4)

• What if 𝑚𝜋 > 0?

where



Bifurcation!

½ crystal 𝛼 crystal chain sheet>                   >                  >





Summary

• Topological solitons can bind together to form crystals

• To find crystal structure need to minimize 𝐸 over both field(s) and 
period lattice Λ

• For many theories, can formulate variation of Λ as variation of metric 𝑔
𝐸 𝜙 ∘ 𝑓, 𝑔 = 𝐸 𝜑, 𝑓−1 ∗𝑔

⟹ stress tensor.

• Optimal lattices often have less symmetry than one might expect


