Martin Speight, University of Leeds Joint work with Derek Harland and Paul Leask

Topological solitons

- Smooth, spatially localized lump-like solutions of classical nonlinear field theories
- Stable due to topology
- Particle like: relativistic kinematics, scattering, radiation, anti-solitons
- Naïve dream: maybe elementary particles really *are* solitons!
- Prosaic reality: probably not, but the same/similar structures are ubiquitous in condensed matter systems
- Kinks, lumps, vortices, monopoles, **Skyrmions**

Skyrmions T.H.R. Skyrme

 $\varphi : \mathbb{R}^3 \to S^3$

 $\varphi(\infty) = (1, 0, 0, 0)$

Extension $\varphi : \mathbb{R}^3 \cup {\infty} \to S^3$

Topological charge $B = \deg \varphi \in \mathbb{Z}$

$$
B=\int_{\mathbb{R}^3}\varphi^*\mathrm{vol}_{S^3}
$$

Picture credits: Skyrme portrait, Master & Fellows, Trinity College, Cambridge University Skyrmions: Carlos Naya and Paul Sutcliffe

 $\varphi : \mathbb{R}^2 \cup {\infty} \rightarrow S^2$

Topological charge $n = \deg \varphi \in \mathbb{Z}$

$$
n = \int_{\mathbb{R}^2} \varphi \cdot \left(\frac{\partial \varphi}{\partial x_1} \times \frac{\partial \varphi}{\partial x_2} \right)
$$

Picture credit: Karin Everschor-Sitte and Matthias Sitte

Interskyrmion forces

• Linearize model about vacuum

 $\varphi = (0,0,1) + (\varepsilon_1, \varepsilon_2, 0) + \cdots$

 $\varepsilon_1 = -q\partial_{x_1} K_0(r) + \cdots$ $\varepsilon_2 = -q\partial_{x_2} K_0(r) + \cdots$

• Solution of Klein-Gordon model with static sources

$$
\mathcal{L} = \frac{1}{2}\partial_{\mu}\varepsilon \cdot \partial^{\mu}\varepsilon - \frac{1}{2}|\varepsilon|^{2} + \kappa_{i}\varepsilon_{i}
$$

$$
\kappa_{1} = (q, 0) \cdot \nabla \delta(x) \qquad \kappa_{2} = (0, q) \cdot \nabla \delta(x)
$$

• Orthogonal pair of scalar dipoles

Piette, Schroers and Zakrzewski, Z.Phys. C65 (1995) 165-174

Interskyrmion forces

• At long range, skyrmion interactions should approach forces between point particles carrying an orthogonal pair of scalar dipoles

$$
E_{int} = q^2 K_0(R) \cos(\theta_1 - \theta_2)
$$

• Attractive channel:

Interskyrmion forces

• Skyrmions bind together to form "molecules"

• $n \to \infty$ Crystals?

• Usual approach: choose a plausible period lattice and topological charge per unit cell n.

$$
\Lambda = \{n_1\mathbf{E}_1 + n_2\mathbf{E}_2 : (n_1, n_2) \in \mathbb{Z}^2\}
$$

- Minimize E over all degree n fields with $\varphi(\mathbf{x} + \mathbf{v}) = \varphi(\mathbf{x})$ for all $\mathbf{v} \in \Lambda$
- Then minimize w.r.t. cell area
- Equivalent to putting model on (compact) torus $T^2_{\Lambda} = \mathbb{R}^2/\Lambda$

- Problem: once you put the model on a compact domain, every homotopy class of maps will have an energy minimizer
- Consider 1 fermi 1 degree
- Is the $n = 2$ (say) minimizer on this torus a soliton crystal?
- Clearly not: artefact of the boundary conditions.
- We should minimize E w.r.t. field φ and period lattice Λ

- Define new coordinates $(x_1, x_2) =: X_1 E_1 + X_2 E_2$
- (T_Λ^2, g_{Euc}) is equivalent to (\mathbb{T}^2, g) with metric $g = g_{ij} dX_i dX_j$, $g_{ij} = \mathbf{E}_i \cdot \mathbf{E}_j$
- Varying Λ equivalent to fixing torus $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ and varying metric g

Varying the lattice $=$ varying the metric

• Given a smooth curve g_t of metrics with $\partial_t|_{t=0}g_t = \varepsilon$,

$$
\left. \frac{d}{dt} \right|_{t=0} E(\varphi, g_t) = \langle S(\varphi, g), \varepsilon \rangle_{L^2}
$$

where $S(\varphi, g)$ is the stress tensor

• Condition for $\varphi : T^2_\Lambda \to S^2$ to be critical for variations of Λ :

$$
\langle S(\varphi,g),\varepsilon\rangle_{L^2}=0
$$

for all symmetric parallel bilinear forms ε

- $\varepsilon = g$: Virial constraint $E_0 = E_4$
- $\varepsilon \perp g$: φ must be "conformal on average"

More explicitly...

- Define area $A = \sqrt{\det g}$ and $s = \sqrt{\det g}g^{-1}$ (note that $\det s = 1$
- For any fixed $\varphi : \mathbb{T}^2 \to S^2$,

$$
E(\varphi, g) = \frac{1}{2} \text{tr}(H(\varphi)s) + \frac{C_4(\varphi)}{A} + C_0(\varphi)A
$$

where
$$
H_{ij}(\varphi) = \int_{\mathbb{T}^2} \frac{\partial \varphi}{\partial X_i} \cdot \frac{\partial \varphi}{\partial X_j}, \quad C_4(\varphi) = \frac{1}{2} \int_{\mathbb{T}_2} |\partial_1 \varphi \times \partial_2 \varphi|^2, \quad C_0(\varphi) = \int_{\mathbb{T}_2} V(\varphi)
$$

• This has a unique global minimum at

$$
A=\sqrt{C_0/C_4}, \qquad s \parallel H^{-1}
$$

Numerical method

- 1. Choose an initial guess (φ, g)
- 2. Minimize $E(\varphi, g)$ w.r.t. φ with g fixed by "Arrested Newton Flow"
- 3. Compute $H(\varphi_{min})$, $C_4(\varphi_{min})$, $C_0(\varphi_{min})$
- 4. Construct $g = \lambda H$ with area $\sqrt{C_0/C_4}$
- 5. Go to 2

Gradient

Arrested Newton Flow

$$
\varphi_t = -\nabla E(\varphi)
$$

Gradient

Arrested Newton Flow

The results: $V(\varphi) = 1 - \varphi_3$

- Optimal crystal has $n = 2$ per unit cell
- Equianharmonic period lattice

$$
\Lambda = span\{L, Le^{\frac{i\pi}{3}}\}
$$

- Already known (Hen and Karliner 2008)
- But what if we change V ?

 $V(\varphi) = \varphi_3^2$

$n = 1$ isolated skyrmion

Optimal crystal

Two topological energy bounds:

$$
E_2(\varphi) = \frac{1}{2} \int_{\Sigma} |\varphi_x|^2 + |\varphi_y|^2
$$

=
$$
\frac{1}{2} \int_{\Sigma} |\varphi_y - \varphi \times \varphi_x|^2 + \int_{\Sigma} \varphi \cdot (\varphi_x \times \varphi_y)
$$

=
$$
\frac{1}{2} \int_{\Sigma} |\varphi_y - \varphi \times \varphi_x|^2 + 2\pi n
$$

Hence $E_2(\varphi) \geq 2\pi n$ with equality iff

$$
\varphi_y = \varphi \times \varphi_x
$$

$$
d\varphi \circ J_{\Sigma} = J_{S^2} \circ d\varphi
$$

that is, $\varphi : \Sigma \to S^2$ is **holomorphic**

(Lichnerowicz)

Two topological bounds

$$
E_4(\varphi) + E_0(\varphi) = \frac{1}{2} \int_{\Sigma} |\varphi^* \text{vol}_{S^2}|^2 + U(\varphi)^2
$$

=
$$
\frac{1}{2} \int_{\Sigma} (*\varphi^* \text{vol}_{S^2} - U(\varphi))^2 + \int_{\Sigma} \varphi^* (U \text{vol}_{S^2})
$$

=
$$
\frac{1}{2} \int_{\Sigma} (*\varphi^* \text{vol}_{S^2} - U(\varphi))^2 + 4\pi \langle U \rangle n
$$

Hence, $(E_4 + E_0)(\varphi) \geq 4\pi \langle U \rangle n$ with equality iff φ^* vol_{S2} = $U(\varphi)$ vol_Σ $\varphi^*({\rm vol}_{S^2}/U) = {\rm vol}_{\Sigma}$

that is, $\varphi : (\Sigma, \text{vol}_{\Sigma}) \to (S^2, \text{vol}_{S^2}/U)$ is **volume preserving**

(C. Adam, T. Romanczukiewicz, J. Sanchez-Guillen and A. Wereszczynski, J.M. Izquierdo, M.S. Rashi d, B. Piette and W.J. Zakrzewski, D.H. Tchrakian, M. de Innocentis and R.S. Ward…

Cooking up a potential

Stereographic coordinate on S^2

Degree
$$
n = 2
$$

\nholomorphic map

\n
$$
\varphi_{\wp} : \Sigma \to S^2
$$
\n
$$
z \mapsto W(z) = \wp(z)
$$

$$
\wp'(z)^2 = 4(\wp(z) - e_1)(\wp(z) - e_2)(\wp(z) - e_3)
$$

Cooking up a potential

• For any holomorphic map $\varphi : z \mapsto W(z)$,

$$
\varphi^* \text{vol}_{S^2} = \frac{4|W'(z)|^2}{(1+|W(z)|^2)^2} \frac{i}{2} dz \wedge d\overline{z}
$$

• Define

$$
U(W) = \frac{16|(W - e_1)(W - e_2)(W - e_3)|}{(1 + |W|^2)^2}
$$

 $V = U^2/2$ is a smooth potential on S^2 with exactly 4 vacua

- φ_{\wp} is **holomorphic** and satisfies φ_{\wp}^* vol₅₂ = $(U \circ \varphi_{\wp})$ vol_{Σ}
- So $E(\varphi_{\varnothing}, g_{\Lambda}) = 2\pi n(1 + 2\langle U \rangle)$ the least possible energy among all degree 2 maps $\mathbb{T}^2 \to S^2$ and all metrics on \mathbb{T}^2 !
- φ_{φ} is certainly a soliton crystal for the model with potential $V = U^2/2$

Cooking up a potential

• This holds on any torus $\mathbb{C}/\Lambda!$

• There is a choice of potential $V(\varphi)$ for which the baby Skyrme model has a skyrmion crystal with the above period lattice

The adult Skyrme model
\n•
$$
\varphi : \mathbb{R}^3 \to S^3 = SU(2)
$$

\n
$$
E = \int_{\mathbb{R}^3} \frac{1}{2} |d\varphi|^2 + \frac{1}{2} |\varphi^* \Omega|^2 + m_\pi^2 (1 - \varphi_0)
$$
\n
$$
= \text{Tr}(H\Sigma^{-1}) + \text{Tr}(F\Sigma) + \frac{C_0}{\det \Sigma}
$$
\nwhere $\Sigma = \frac{g}{\sqrt{\det g}}$.
\n• $m_\pi = 0$: Kugler-Shtrikman
\ncrystal of half-skyrmions ($B = 4$)

 $0\,$

 $\overline{4}$

3

 $\overline{2}$

 \boldsymbol{y}

 O $\overline{0}$ $\overline{4}$

 $\overline{2}$

 \boldsymbol{x}

• What if $m_\pi > 0$?

 $\frac{1}{2}$ crystal α crystal \geq chain \geq sheet

Summary

- Topological solitons can bind together to form crystals
- To find crystal structure need to minimize E over both field(s) and period lattice Λ
- For many theories, can formulate variation of Λ as variation of metric g $E(\phi \circ f, g) = E(\phi, (f^{-1})^* g)$
	- \implies stress tensor.
- Optimal lattices often have less symmetry than one might expect