Wave-map flow and the geometry of the space of holomorphic maps

Martin Speight University of Leeds, UK

November 6, 2009

・ロト ・四ト ・ヨト ・ヨト ・ヨ

$$\phi: M \to N \subset \mathbb{R}^k, \qquad E(\phi) = \frac{1}{2} \int_M |\mathrm{d}\phi|^2$$
 $(\Delta \phi)(x) \perp T_{\phi(x)} N$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$\phi: M \to N \subset \mathbb{R}^k, \qquad E(\phi) = \frac{1}{2} \int_M |\mathrm{d}\phi|^2$$
 $(\Delta \phi)(x) \perp T_{\phi(x)} N$

• E.g.
$$N = S^2 \subset \mathbb{R}^3$$
:

 $\Delta \phi - (\phi \cdot \Delta \phi)\phi = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Static Heisenberg ferromagnet.

$$\varphi: M \to N \subset \mathbb{R}^k, \qquad E(\varphi) = \frac{1}{2} \int_M |\mathrm{d}\varphi|^2$$

 $(\Delta \varphi)(x) \perp T_{\varphi(x)}N$

• E.g. $N = S^2 \subset \mathbb{R}^3$:

 $\Delta \phi - (\phi \cdot \Delta \phi) \phi = 0$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Static Heisenberg ferromagnet.

• Conformally invariant in dimension 2.

Domain Lorentzian ($E(\phi)$ now $S(\phi)$).

Domain Lorentzian ($E(\phi)$ now $S(\phi)$). $(M,\eta) = (\mathbb{R} \times \Sigma, dt^2 - g_{\Sigma})$ $S(\phi) = \int_{\mathbb{R}} dt \left\{ \frac{1}{2} \int_{\Sigma} |\phi_t|^2 - \frac{1}{2} \int_{\Sigma} |d\phi|^2 \right\}$ $(\Box \phi)(t, x) \perp T_{\phi(t, x)} N \quad \text{for all } (t, x) \in M$ where $\Box = \partial_t^2 - \Delta_{\Sigma}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Domain Lorentzian ($E(\varphi)$ now $S(\varphi)$). $(M,\eta) = (\mathbb{R} \times \Sigma, dt^2 - g_{\Sigma})$ $S(\varphi) = \int_{\mathbb{R}} dt \left\{ \frac{1}{2} \int_{\Sigma} |\varphi_t|^2 - \frac{1}{2} \int_{\Sigma} |d\varphi|^2 \right\}$ $(\Box \varphi)(t, x) \perp T_{\varphi(t, x)} N \quad \text{for all } (t, x) \in M$ where $\Box = \partial_t^2 - \Delta_{\Sigma}$.

• Obviously, static wave maps are harmonic maps $\Sigma \to N$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Domain Lorentzian ($E(\phi)$ now $S(\phi)$). (M,η) = ($\mathbb{R} \times \Sigma, dt^2 - g_{\Sigma}$)

$$S(\varphi) = \int_{\mathbb{R}} dt \left\{ \frac{1}{2} \int_{\Sigma} |\varphi_t|^2 - \frac{1}{2} \int_{\Sigma} |\mathrm{d}\varphi|^2 \right\}$$

 $(\Box \varphi)(t,x) \perp T_{\varphi(t,x)}N$ for all $(t,x) \in M$ where $\Box = \partial_t^2 - \Delta_{\Sigma}$.

• Obviously, static wave maps are harmonic maps $\Sigma \to N$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• dim $\Sigma = 2$ most interesting

• Square spin lattice: $\mathbf{S} : \mathbb{Z} \times \mathbb{Z} \to S^2$

• Square spin lattice: $\mathbf{S} : \mathbb{Z} \times \mathbb{Z} \to S^2$

$$\frac{d\mathbf{S}_{ij}}{d\tau} = -\mathbf{S}_{ij} \times \frac{\partial H}{\partial \mathbf{S}_{ij}}, \qquad H := \sum_{i,j} J_{ij} \left[2 + \mathbf{S}_{ij} \cdot (\mathbf{S}_{i,j+1} + \mathbf{S}_{i+1,j}) \right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

• Square spin lattice: $\mathbf{S} : \mathbb{Z} \times \mathbb{Z} \to S^2$

$$\frac{d\mathbf{S}_{ij}}{d\tau} = -\mathbf{S}_{ij} \times \frac{\partial H}{\partial \mathbf{S}_{ij}}, \qquad H := \sum_{i,j} J_{ij} \left[2 + \mathbf{S}_{ij} \cdot (\mathbf{S}_{i,j+1} + \mathbf{S}_{i+1,j}) \right]$$

• Inhomogeneous exchange integral $J_{ij} > 0$: spins like to anti-align.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

• Square spin lattice: $\mathbf{S} : \mathbb{Z} \times \mathbb{Z} \to S^2$

$$\frac{d\mathbf{S}_{ij}}{d\tau} = -\mathbf{S}_{ij} \times \frac{\partial H}{\partial \mathbf{S}_{ij}}, \qquad H := \sum_{i,j} J_{ij} \left[2 + \mathbf{S}_{ij} \cdot (\mathbf{S}_{i,j+1} + \mathbf{S}_{i+1,j}) \right]$$

• Inhomogeneous exchange integral $J_{ij} > 0$: spins like to anti-align.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

・ロト・日本・日本・日本・日本・日本

▲ロト▲聞▶▲目▶▲目▶ 目 のへの

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

• $x = \alpha \delta$, $y = \beta \delta$, $t = 2\tau \delta$

▲□▶ ▲□▶ ▲□▶ ★ □▶ = 三 の < @

- $x = \alpha \delta$, $y = \beta \delta$, $t = 2\tau \delta$
- Assumption:

$$\begin{array}{c} \mathbf{A}_{\alpha,\beta} \\ \mathbf{B}_{\alpha,\beta} \\ J_{ij} \end{array} \right\} \quad \stackrel{\delta \to 0}{\longrightarrow} \quad \begin{cases} \mathsf{A}(x,y) \\ \mathsf{B}(x,y) \\ \mathsf{J}(x,y) \end{cases}$$

• New fields: $\mathbf{m} = \frac{1}{2}(A+B) = O(\delta), \quad \mathbf{n} = \frac{1}{2}(A-B)$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

- $x = \alpha \delta$, $y = \beta \delta$, $t = 2\tau \delta$
- Assumption:

$$\begin{array}{c} \mathbf{A}_{\alpha,\beta} \\ \mathbf{B}_{\alpha,\beta} \\ J_{ij} \end{array} \right\} \quad \stackrel{\delta \to 0}{\longrightarrow} \quad \begin{cases} \mathsf{A}(x,y) \\ \mathsf{B}(x,y) \\ \mathsf{J}(x,y) \end{cases}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• New fields: $\mathbf{m} = \frac{1}{2}(\mathbf{A} + \mathbf{B}) = O(\delta), \quad \mathbf{n} = \frac{1}{2}(\mathbf{A} - \mathbf{B})$ $\mathbf{n} \times \mathbf{n}_{tt} = \mathbf{J}^2 \mathbf{n} \times (\mathbf{n}_{xx} + \mathbf{n}_{yy}) + O(\delta)$ • Leading order

$$\mathbf{n} \times \left(\mathbf{n}_{tt} - J^2 \mathbf{n}_{xx} - J^2 \mathbf{n}_{yy}\right) = \mathbf{0}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Leading order

$$\mathbf{n} \times \left(\mathbf{n}_{tt} - \mathbf{J}^2 \mathbf{n}_{xx} - \mathbf{J}^2 \mathbf{n}_{yy}\right) = \mathbf{0}$$

• Wave map flow $\mathbf{n} : \mathbb{R} \times \Sigma \to S^2$ where Σ has metric

 $g_{\Sigma} = \mathsf{J}(x,y)^{-2}(dx^2 + dy^2)$

Leading order

$$\mathbf{n} \times \left(\mathbf{n}_{tt} - \mathbf{J}^2 \mathbf{n}_{xx} - \mathbf{J}^2 \mathbf{n}_{yy}\right) = \mathbf{0}$$

• Wave map flow $\mathbf{n} : \mathbb{R} \times \Sigma \to S^2$ where Σ has metric

$$g_{\Sigma} = \mathsf{J}(x, y)^{-2}(dx^2 + dy^2)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Static problem: conformally invariant, hence independent of J

Leading order

$$\mathbf{n} \times \left(\mathbf{n}_{tt} - \mathbf{J}^2 \mathbf{n}_{xx} - \mathbf{J}^2 \mathbf{n}_{yy}\right) = \mathbf{0}$$

• Wave map flow $\mathbf{n}: \mathbb{R} \times \Sigma \to S^2$ where Σ has metric

$$g_{\Sigma} = \mathsf{J}(x,y)^{-2}(dx^2 + dy^2)$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Static problem: conformally invariant, hence independent of J
- Boundary condition: $\Sigma = \mathbb{R}^2 \cup \{\infty\} \sim S^2$

• $\phi: M \to N, (M, \omega^M)$ compact co-Kähler, (N, ω^N) Kähler

• $\varphi: M \to N, (M, \omega^M)$ compact co-Kähler, (N, ω^N) Kähler

 $d^{\mathbb{C}}\phi: \mathit{T'M} \oplus \mathit{T''M} \to \mathit{T'N} \oplus \mathit{T''N}$

• $\phi: M \to N, (M, \omega^M)$ compact co-Kähler, (N, ω^N) Kähler

 $d^{\mathbb{C}}\phi: T'M\oplus T''M\to T'N\oplus T''N$

•
$$E(\phi) = \frac{1}{2} \int_{M} |\mathrm{d}\phi|^2 = \frac{1}{2} \int_{M} (|\mathrm{d}'\phi|^2 + |\mathrm{d}''\phi|^2) =: E'(\phi) + E''(\phi)$$

• $\varphi: M \to N$, (M, ω^M) compact co-Kähler, (N, ω^N) Kähler

 $d^{\mathbb{C}}\phi: T'M\oplus T''M\to T'N\oplus T''N$

•
$$E(\varphi) = \frac{1}{2} \int_{M} |d\varphi|^{2} = \frac{1}{2} \int_{M} (|d'\varphi|^{2} + |d''\varphi|^{2}) =: E'(\varphi) + E''(\varphi)$$

• Fact: $K(\varphi) := E'(\varphi) - E''(\varphi) = \frac{1}{2} \langle \omega^{M}, \varphi^{*} \omega^{N} \rangle_{L^{2}}$

• $\varphi: M \to N$, (M, ω^M) compact co-Kähler, (N, ω^N) Kähler

 $d^{\mathbb{C}}\phi: T'M\oplus T''M\to T'N\oplus T''N$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

•
$$E(\varphi) = \frac{1}{2} \int_{M} |d\varphi|^{2} = \frac{1}{2} \int_{M} (|d'\varphi|^{2} + |d''\varphi|^{2}) =: E'(\varphi) + E''(\varphi)$$

• Fact: $K(\varphi) := E'(\varphi) - E''(\varphi) = \frac{1}{2} \langle \omega^{M}, \varphi^{*} \omega^{N} \rangle_{L^{2}}$

• Corollary: $K(\phi)$ is a homotopy invariant

• $\phi: M \to N$, (M, ω^M) compact co-Kähler, (N, ω^N) Kähler

 $d^{\mathbb{C}}\phi: T'M\oplus T''M\to T'N\oplus T''N$

•
$$E(\varphi) = \frac{1}{2} \int_{M} |d\varphi|^{2} = \frac{1}{2} \int_{M} (|d'\varphi|^{2} + |d''\varphi|^{2}) =: E'(\varphi) + E''(\varphi)$$

• Eact: $K(\varphi) := E'(\varphi) - E''(\varphi) = \frac{1}{2} \langle \varphi^{M} | \varphi^{*} \varphi^{N} \rangle_{L^{2}}$

- Fact: $K(\phi) := E'(\phi) E''(\phi) = \frac{1}{2} \langle \omega^{m}, \phi^{*} \omega^{m} \rangle_{L^{2}}$
- Corollary: $K(\phi)$ is a homotopy invariant
- Corollary: Let ϕ be holomorphic and ψ be homotopic to $\phi.$ Then

 $E(\phi) = K(\phi) = K(\psi) \le E'(\psi) \le E(\psi)$

- コン・4回シュービン・4回シューレー

• $\phi: M \to N$, (M, ω^M) compact co-Kähler, (N, ω^N) Kähler

 $d^{\mathbb{C}}\phi: \mathit{T'}M\oplus \mathit{T''}M \to \mathit{T'}N\oplus \mathit{T''}N$

•
$$E(\varphi) = \frac{1}{2} \int_{M} |d\varphi|^{2} = \frac{1}{2} \int_{M} (|d'\varphi|^{2} + |d''\varphi|^{2}) =: E'(\varphi) + E''(\varphi)$$

• Fact: $K(\varphi) := E'(\varphi) - E''(\varphi) = \frac{1}{2} \langle \omega^{M}, \varphi^{*} \omega^{N} \rangle_{L^{2}}$

- Corollary: $K(\phi)$ is a homotopy invariant
- Corollary: Let ϕ be holomorphic and ψ be homotopic to ϕ . Then

 $E(\phi) = K(\phi) = K(\psi) \le E'(\psi) \le E(\psi)$

- コン・4回シュービン・4回シューレー

i.e. Holomorphic maps minimize E in their homotopy class.

• $\phi: M \to N$, (M, ω^M) compact co-Kähler, (N, ω^N) Kähler

 $d^{\mathbb{C}}\phi: \mathit{T'M} \oplus \mathit{T''M} \to \mathit{T'N} \oplus \mathit{T''N}$

•
$$E(\varphi) = \frac{1}{2} \int_{M} |d\varphi|^{2} = \frac{1}{2} \int_{M} (|d'\varphi|^{2} + |d''\varphi|^{2}) =: E'(\varphi) + E''(\varphi)$$

• Fact: $K(\varphi) := E'(\varphi) - E''(\varphi) = \frac{1}{2} \langle \omega^{M}, \varphi^{*} \omega^{N} \rangle_{L^{2}}$

- Corollary: $K(\phi)$ is a homotopy invariant
- Corollary: Let ϕ be holomorphic and ψ be homotopic to ϕ . Then

 $E(\phi) = K(\phi) = K(\psi) \le E'(\psi) \le E(\psi)$

i.e. Holomorphic maps minimize *E* in their homotopy class.

• $\phi: \Sigma \to S^2$: $E \ge 4\pi n$, equality iff holomorphic

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$u(z) = \frac{a_0 + a_1 z + \dots + a_n z^n}{b_0 + b_1 z + \dots + b_n z^n}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• Boundary condition: $b_n = 0$. Energy localizes around zeros of u

• Boundary condition: $b_n = 0$. Energy localizes around zeros of u

Lumps

• Boundary condition: $b_n = 0$. Energy localizes around zeros of u

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

• Moduli space $M_n \subset \mathbb{C}^{2n}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

・ロト・西・・田・・田・ 日・ うらぐ

• Wave map flow conserves $E_{tot} = E(\varphi) + \frac{1}{2} \int_{\Sigma} |\varphi_t|^2$

- Wave map flow conserves $E_{tot} = E(\phi) + \frac{1}{2} \int_{\Sigma} |\phi_t|^2$
- Constrain $\varphi(t)$ to M_n

$$S = \int dt \{ \frac{1}{2} \int_{\Sigma} |\varphi_t|^2 - E(\varphi) \}$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

- Wave map flow conserves $E_{tot} = E(\phi) + \frac{1}{2} \int_{\Sigma} |\phi_t|^2$
- Constrain $\varphi(t)$ to M_n

$$S = \int dt \{ \frac{1}{2} \int_{\Sigma} |\varphi_t|^2 - E(\varphi) \}$$

$$S|_{TM_n} = \int dt \{ \frac{1}{2} \gamma(\dot{\varphi}, \dot{\varphi}) - 4\pi n \}$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

- Wave map flow conserves $E_{tot} = E(\phi) + \frac{1}{2} \int_{\Sigma} |\phi_t|^2$
- Constrain $\varphi(t)$ to M_n

$$S = \int dt \{ \frac{1}{2} \int_{\Sigma} |\varphi_t|^2 - E(\varphi) \}$$

$$S|_{TM_n} = \int dt \{ \frac{1}{2} \gamma(\dot{\varphi}, \dot{\varphi}) - 4\pi n \}$$

Geodesic motion on (M_n, γ) where $\gamma = L^2$ metric.

J nonconstant, bounded: M₁ = C × C[×], foliation by smoothed out copies of Σ = C

J nonconstant, bounded: M₁ = C × C[×], foliation by smoothed out copies of Σ = C

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Snell's law of refraction, refractive index J⁻¹

J nonconstant, bounded: M₁ = C × C[×], foliation by smoothed out copies of Σ = C

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Snell's law of refraction, refractive index J⁻¹
- E.g. domain wall

- J nonconstant, bounded: M₁ = C × C[×], foliation by smoothed out copies of Σ = C
- Snell's law of refraction, refractive index J⁻¹
- E.g. domain wall

• Σ noncompact, γ singular (non-normalizable zero-modes)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

• Σ noncompact, γ singular (non-normalizable zero-modes)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Σ compact, γ well defined on whole of TM_n

• Σ noncompact, γ singular (non-normalizable zero-modes)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Σ compact, γ well defined on whole of TM_n
- Two ways to compactify:

- Σ noncompact, γ singular (non-normalizable zero-modes)
- Σ compact, γ well defined on whole of TM_n
- Two ways to compactify:

• J(x,y) unbounded, e.g. $J(x,y) = 1 + x^2 + y^2 \Rightarrow \Sigma = S^2$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Σ noncompact, γ singular (non-normalizable zero-modes)
- Σ compact, γ well defined on whole of TM_n
- Two ways to compactify:
 - J(x,y) unbounded, e.g. $J(x,y) = 1 + x^2 + y^2 \Rightarrow \Sigma = S^2$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Impose periodicity, $J = \text{constant}, \Sigma = T^2$

Theorem (Sadun, JMS)

Let Σ be a compact Riemann surface with metric g_{Σ} , M_n be the (smooth locus) of the space of degree *n* holomorphic maps $\Sigma \to S^2$, and γ be the L^2 metric on M_n . Then (M_n, γ) is geodesically incomplete.

・ロト ・個ト ・ヨト ・ヨト 三日

Theorem (Sadun, JMS)

Let Σ be a compact Riemann surface with metric g_{Σ} , M_n be the (smooth locus) of the space of degree n holomorphic maps $\Sigma \to S^2$, and γ be the L^2 metric on M_n . Then (M_n, γ) is geodesically incomplete.

Proof: Let $u_0 \in M_n$. Then ku_0 , k = 1, 2, 3... is a Cauchy sequence in M_n . Its pointwise limit is discontinuous, so the sequence does not converge. \Box .

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Theorem (Sadun, JMS)

Let Σ be a compact Riemann surface with metric g_{Σ} , M_n be the (smooth locus) of the space of degree n holomorphic maps $\Sigma \to S^2$, and γ be the L^2 metric on M_n . Then (M_n, γ) is geodesically incomplete.

Proof: Let $u_0 \in M_n$. Then ku_0 , k = 1, 2, 3... is a Cauchy sequence in M_n . Its pointwise limit is discontinuous, so the sequence does not converge. \Box .

 As k→∞, energy localizes around zeros of u₀, i.e. lumps shrink and collapse

• $M_1 = \operatorname{Rat}_1 = PL(2, \mathbb{C}) = SO(3) \times \mathbb{R}^3 = TSO(3) = \ldots \subset \mathbb{C}P^3$

• $M_1 = \operatorname{Rat}_1 = PL(2, \mathbb{C}) = SO(3) \times \mathbb{R}^3 = TSO(3) = \ldots \subset \mathbb{C}P^3$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Cohomogeneity 1 $SO(3) \times SO(3)$ action

- $M_1 = \operatorname{Rat}_1 = PL(2, \mathbb{C}) = SO(3) \times \mathbb{R}^3 = TSO(3) = \ldots \subset \mathbb{C}P^3$
- Cohomogeneity 1 $SO(3) \times SO(3)$ action

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

- $M_1 = \operatorname{Rat}_1 = PL(2, \mathbb{C}) = SO(3) \times \mathbb{R}^3 = TSO(3) = \ldots \subset \mathbb{C}P^3$
- Cohomogeneity 1 $SO(3) \times SO(3)$ action

 Kähler, finite diameter and volume, Ricci positive, unbded scalar curvature

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- $M_1 = \operatorname{Rat}_1 = PL(2, \mathbb{C}) = SO(3) \times \mathbb{R}^3 = TSO(3) = \ldots \subset \mathbb{C}P^3$
- Cohomogeneity 1 $SO(3) \times SO(3)$ action

- Kähler, finite diameter and volume, Ricci positive, unbded scalar curvature
- Geodesic flow complicated. Generically lumps do not travel on great circles

▲□▶▲□▶▲□▶▲□▶ □ のQで

M₂(T²) = [T² × Rat₁]/[ℤ₂ × ℤ₂], finite volume and diameter (JMS), numerics (Cova)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

M₂(T²) = [T² × Rat₁]/[ℤ₂ × ℤ₂], finite volume and diameter (JMS), numerics (Cova)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• $M_n(\mathbb{R} \times S^1)$ geodesic flow (Romao)

Geometry of $M_n(\Sigma)$

- M₂(T²) = [T² × Rat₁]/[ℤ₂ × ℤ₂], finite volume and diameter (JMS), numerics (Cova)
- $M_n(\mathbb{R} \times S^1)$ geodesic flow (Romao)
- M^{eq}_n(S²) = ℝ × S¹ volume, total Gauss curvature, lifted geodesic flow (McGlade)

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

- M₂(T²) = [T² × Rat₁]/[ℤ₂ × ℤ₂], finite volume and diameter (JMS), numerics (Cova)
- $M_n(\mathbb{R} \times S^1)$ geodesic flow (Romao)
- M^{eq}_n(S²) = ℝ × S¹ volume, total Gauss curvature, lifted geodesic flow (McGlade)
- Spectral geometry of M₁(S²): quantum dynamics of a lump on S² (Krusch-JMS)

- M₂(T²) = [T² × Rat₁]/[ℤ₂ × ℤ₂], finite volume and diameter (JMS), numerics (Cova)
- $M_n(\mathbb{R} \times S^1)$ geodesic flow (Romao)
- M^{eq}_n(S²) = ℝ × S¹ volume, total Gauss curvature, lifted geodesic flow (McGlade)
- Spectral geometry of M₁(S²): quantum dynamics of a lump on S² (Krusch-JMS)

2nd strand: Prove conjecture (geodesic flow in M_n approximates wave map flow)

Consider one-parameter family of Cauchy problems for wave map flow $\mathbb{R} \times \Sigma \to S^2$:

 $\varphi(0) = \varphi_0, \qquad \varphi_t(0) = \varepsilon \varphi_1$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

where $\phi_0 \in M_n$, $\phi_1 \in T_{\phi_0}M_n$ and $\varepsilon > 0$.

Consider one-parameter family of Cauchy problems for wave map flow $\mathbb{R} \times \Sigma \to S^2$:

 $\varphi(0) = \varphi_0, \qquad \varphi_t(0) = \varepsilon \varphi_1$

where $\phi_0 \in M_n$, $\phi_1 \in T_{\phi_0}M_n$ and $\varepsilon > 0$.

There exist T > 0 and $\varepsilon_* > 0$ (depending on (ϕ_0, ϕ_1)) such that, for all $\varepsilon \in (0, \varepsilon_*]$, Cauchy problem has a unique solution for $t \in [0, T/\varepsilon]$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consider one-parameter family of Cauchy problems for wave map flow $\mathbb{R} \times \Sigma \to S^2$:

 $\varphi(0) = \varphi_0, \qquad \varphi_t(0) = \varepsilon \varphi_1$

where $\phi_0 \in M_n$, $\phi_1 \in T_{\phi_0}M_n$ and $\varepsilon > 0$.

There exist T > 0 and $\varepsilon_* > 0$ (depending on (ϕ_0, ϕ_1)) such that, for all $\varepsilon \in (0, \varepsilon_*]$, Cauchy problem has a unique solution for $t \in [0, T/\varepsilon]$. Furthermore, the time re-scaled solution

 $\varphi_{\varepsilon}: [0,T] \times \Sigma \to S^2, \qquad \varphi_{\varepsilon}(\tau,x) = \varphi(\tau/\varepsilon,x)$

converges uniformly to $\psi : [0, T] \times \Sigma \to S^2$, the geodesic in M_n with the same initial data.

We'll sketch the proof in the case $\Sigma = T^2$. Ingredients:

● Wave map eqn for $\phi \leftrightarrow$ coupled ODE/PDE system for $\phi = \psi + \epsilon^2 Y$

- コン・4回シュービン・4回シューレー

We'll sketch the proof in the case $\Sigma = T^2$. Ingredients:

- Wave map eqn for $\phi \leftrightarrow$ coupled ODE/PDE system for $\phi = \psi + \epsilon^2 Y$
- Short time existence and uniqueness theorem for this system (in a suitable Sobolev space)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We'll sketch the proof in the case $\Sigma = T^2$. Ingredients:

- Wave map eqn for $φ \leftrightarrow$ coupled ODE/PDE system for $φ = ψ + ε^2 Y$
- Short time existence and uniqueness theorem for this system (in a suitable Sobolev space)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ocercivity of the Hessian (and "higher" Hessian)

We'll sketch the proof in the case $\Sigma = T^2$. Ingredients:

- Wave map eqn for $φ \leftrightarrow$ coupled ODE/PDE system for $φ = ψ + ε^2 Y$
- Short time existence and uniqueness theorem for this system (in a suitable Sobolev space)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Ocercivity of the Hessian (and "higher" Hessian)
- Energy estimates for Y(t)

We'll sketch the proof in the case $\Sigma = T^2$. Ingredients:

- Wave map eqn for $φ \leftrightarrow$ coupled ODE/PDE system for $φ = ψ + ε^2 Y$
- Short time existence and uniqueness theorem for this system (in a suitable Sobolev space)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Ocercivity of the Hessian (and "higher" Hessian)
- Energy estimates for Y(t)
- A priori bound
• dim_{\mathbb{R}}M_n(T²) = 4n (n \geq 2)

- dim_{\mathbb{R}}M_n(T²) = 4n (n \geq 2)
- Choose and fix initial data $\phi_0 \in M_n$, $\phi_1 \in T_{\phi_0}M_n$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

- dim_{\mathbb{R}}M_n(T²) = 4n (n \geq 2)
- Choose and fix initial data $\phi_0 \in M_n$, $\phi_1 \in T_{\phi_0}M_n$.
- Choose and fix real local coords q : ℝ⁴ⁿ ⊃ U → M_n Denote by ψ(q) the h-map corresponding to q.
 Convenient to demand that φ₀ = ψ(0) and U = ℝ⁴ⁿ.

• Wave map equation

$$\varphi_{tt} - \varphi_{xx} - \varphi_{yy} + (|\varphi_t|^2 - |\varphi_x|^2 - |\varphi_y|^2)\varphi = 0$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Wave map equation

$$\varphi_{tt} - \varphi_{xx} - \varphi_{yy} + (|\varphi_t|^2 - |\varphi_x|^2 - |\varphi_y|^2)\varphi = 0$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

• Slow time $\tau = \varepsilon t$ (book-keeping device)

Wave map equation

$$\varphi_{tt} - \varphi_{xx} - \varphi_{yy} + (|\varphi_t|^2 - |\varphi_x|^2 - |\varphi_y|^2)\varphi = 0$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Slow time $\tau = \varepsilon t$ (book-keeping device)
- Decompose $\varphi(t) = \psi(q(\tau)) + \varepsilon^2 Y(t)$.

Wave map equation

$$\varphi_{tt} - \varphi_{xx} - \varphi_{yy} + (|\varphi_t|^2 - |\varphi_x|^2 - |\varphi_y|^2)\varphi = 0$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Slow time $\tau = \varepsilon t$ (book-keeping device)
- Decompose $\varphi(t) = \psi(q(\tau)) + \varepsilon^2 Y(t)$.
 - Section: map $Z: \Sigma \to \mathbb{R}^3$

Wave map equation

$$\varphi_{tt} - \varphi_{xx} - \varphi_{yy} + (|\varphi_t|^2 - |\varphi_x|^2 - |\varphi_y|^2)\varphi = 0$$

- Slow time $\tau = \varepsilon t$ (book-keeping device)
- Decompose $\varphi(t) = \psi(q(\tau)) + \varepsilon^2 Y(t)$.
 - Section: map $Z: \Sigma \to \mathbb{R}^3$
 - Tangent section: $Z : \Sigma \to \mathbb{R}^3$ s.t. $Z \cdot \psi = 0$ everywhere

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Wave map equation

$$\phi_{tt} - \phi_{xx} - \phi_{yy} + (|\phi_t|^2 - |\phi_x|^2 - |\phi_y|^2)\phi = 0$$

- Slow time $\tau = \varepsilon t$ (book-keeping device)
- Decompose $\varphi(t) = \psi(q(\tau)) + \varepsilon^2 Y(t)$.
 - Section: map $Z: \Sigma \to \mathbb{R}^3$
 - Tangent section: $Z : \Sigma \to \mathbb{R}^3$ s.t. $Z \cdot \psi = 0$ everywhere

Y is **not** a tangent section (but it's close):

$$|\psi|^2 = |\phi|^2 = 1 \quad \Rightarrow \quad \psi \cdot Y = -\frac{1}{2}\varepsilon^2 |Y|^2$$

Wave map equation

$$\phi_{tt} - \phi_{xx} - \phi_{yy} + (|\phi_t|^2 - |\phi_x|^2 - |\phi_y|^2)\phi = 0$$

- Slow time $\tau = \varepsilon t$ (book-keeping device)
- Decompose $\varphi(t) = \psi(q(\tau)) + \varepsilon^2 Y(t)$.
 - Section: map $Z : \Sigma \to \mathbb{R}^3$
 - Tangent section: $Z : \Sigma \to \mathbb{R}^3$ s.t. $Z \cdot \psi = 0$ everywhere

Y is **not** a tangent section (but it's close):

$$|\psi|^2 = |\phi|^2 = 1 \quad \Rightarrow \quad \psi \cdot Y = -\frac{1}{2} \varepsilon^2 |Y|^2$$

• Choose q so that $\psi(q)$ (locally) minimizes $||Y||_{L^2}$:

$$\langle Y, Z \rangle_{L^2} = 0, \qquad \forall Z \in T_{\psi(q)} \mathsf{M}_n.$$

 $Y_{tt} + L_{\Psi}Y = k + \varepsilon j$

where

$$L_{\Psi}Y = -\Delta Y - (|\psi_x|^2 + |\psi_y|^2)Y - 2(\psi_x \cdot Y_x + \psi_y \cdot Y_y)\psi + 2\{(\psi \cdot Y)\Delta \psi + (\psi \cdot Y)_x\psi_x + (\psi \cdot Y)_y\psi_y\}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

 $Y_{tt} + L_{\Psi}Y = k + \varepsilon j$

where

$$L_{\Psi}Y = -\Delta Y - (|\psi_{x}|^{2} + |\psi_{y}|^{2})Y - 2(\psi_{x} \cdot Y_{x} + \psi_{y} \cdot Y_{y})\psi$$

+2{ $(\psi \cdot Y)\Delta\psi + (\psi \cdot Y)_{x}\psi_{x} + (\psi \cdot Y)_{y}\psi_{y}$ }
$$k = -\psi_{\tau\tau} - |\psi_{\tau}|^{2}\psi$$

$$j = j(\psi, \psi_{\tau}, Y, Y_{t}, Y_{x}, Y_{y})$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

$$L_{\Psi}Y = -\Delta Y - (|\psi_x|^2 + |\psi_y|^2)Y - 2(\psi_x \cdot Y_x + \psi_y \cdot Y_y)\psi + 2\{(\psi \cdot Y)\Delta \psi + (\psi \cdot Y)_x\psi_x + (\psi \cdot Y)_y\psi_y\}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$L_{\Psi}Y = -\Delta Y - (|\psi_{x}|^{2} + |\psi_{y}|^{2})Y - 2(\psi_{x} \cdot Y_{x} + \psi_{y} \cdot Y_{y})\psi$$
$$+ 2\{(\psi \cdot Y)\Delta\psi + (\psi \cdot Y)_{x}\psi_{x} + (\psi \cdot Y)_{y}\psi_{y}\}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

• L_{Ψ} is self adjoint, elliptic

$$L_{\Psi}Y = -\Delta Y - (|\psi_x|^2 + |\psi_y|^2)Y - 2(\psi_x \cdot Y_x + \psi_y \cdot Y_y)\psi + 2\{(\psi \cdot Y)\Delta\psi + (\psi \cdot Y)_x\psi_x + (\psi \cdot Y)_y\psi_y\}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- L_{Ψ} is self adjoint, elliptic
- L_{Ψ} maps tangent sections to tangent sections

$$L_{\Psi}Y = -\Delta Y - (|\psi_{x}|^{2} + |\psi_{y}|^{2})Y - 2(\psi_{x} \cdot Y_{x} + \psi_{y} \cdot Y_{y})\psi$$
$$+ 2\{(\psi \cdot Y)\Delta\psi + (\psi \cdot Y)_{x}\psi_{x} + (\psi \cdot Y)_{y}\psi_{y}\}$$

- L_{Ψ} is self adjoint, elliptic
- L_Ψ maps tangent sections to tangent sections
- On $\Gamma(\psi^{-1}TS^2)$, $L_{\psi} \equiv J_{\psi}$, the **Jacobi operator** for h-map ψ

$$\left. \frac{d^2 E(\psi_s)}{ds^2} \right|_{s=0} = \langle Y, J_{\psi} Y \rangle, \qquad (Y = \partial_s \psi_s|_{s=0})$$

$$L_{\Psi}Y = -\Delta Y - (|\psi_{x}|^{2} + |\psi_{y}|^{2})Y - 2(\psi_{x} \cdot Y_{x} + \psi_{y} \cdot Y_{y})\psi$$
$$+ 2\{(\psi \cdot Y)\Delta\psi + (\psi \cdot Y)_{x}\psi_{x} + (\psi \cdot Y)_{y}\psi_{y}\}$$

- L_{ψ} is self adjoint, elliptic
- L_{\u03c0} maps tangent sections to tangent sections
- On $\Gamma(\psi^{-1}TS^2)$, $L_{\psi} \equiv J_{\psi}$, the **Jacobi operator** for h-map ψ

$$\frac{d^2 E(\Psi_s)}{ds^2}\Big|_{s=0} = \langle Y, J_{\Psi}Y \rangle, \qquad (Y = \partial_s \Psi_s|_{s=0})$$

• $T_{\psi}M_n = \ker J_{\psi}$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへで

$$L_{\Psi}Y = -\Delta Y - (|\psi_{x}|^{2} + |\psi_{y}|^{2})Y - 2(\psi_{x} \cdot Y_{x} + \psi_{y} \cdot Y_{y})\psi$$
$$+ 2\{(\psi \cdot Y)\Delta\psi + (\psi \cdot Y)_{x}\psi_{x} + (\psi \cdot Y)_{y}\psi_{y}\}$$

- L_{ψ} is self adjoint, elliptic
- L_{\u03c0} maps tangent sections to tangent sections
- On $\Gamma(\psi^{-1}TS^2)$, $L_{\psi} \equiv J_{\psi}$, the **Jacobi operator** for h-map ψ

$$\frac{d^2 E(\Psi_s)}{ds^2}\Big|_{s=0} = \langle Y, J_{\Psi}Y \rangle, \qquad (Y = \partial_s \Psi_s|_{s=0})$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- $T_{\Psi}M_n = \ker J_{\Psi}$
- ker $L_{\psi} = \ker J_{\psi} \oplus \langle \psi \rangle$

Evolution of $q(\tau)$

• Recall L² orthogonality constraint

$$\langle Y, \frac{\partial \Psi}{\partial q^i}
angle = 0, \qquad i = 1, 2, \dots, 4n$$

since $\frac{\partial \Psi}{\partial q^i}$ span ker J_{Ψ}

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Evolution of $q(\tau)$

• Recall *L*² orthogonality constraint

$$\langle Y, \frac{\partial \Psi}{\partial q^i} \rangle = 0, \qquad i = 1, 2, \dots, 4n$$

• Differentiate w.r.t. t twice

$$\langle Y_{tt}, \frac{\partial \Psi}{\partial q^i} \rangle = O(\varepsilon)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Evolution of $q(\tau)$

• Recall L² orthogonality constraint

$$\langle Y, \frac{\partial \Psi}{\partial q^i} \rangle = 0, \qquad i = 1, 2, \dots, 4n$$

Differentiate w.r.t. t twice

$$\langle Y_{tt}, \frac{\partial \Psi}{\partial q^i} \rangle = O(\varepsilon)$$

 $\langle -LY + k, \frac{\partial \Psi}{\partial q^i} \rangle = O(\varepsilon)$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへ⊙

• Recall L² orthogonality constraint

$$\langle Y, \frac{\partial \Psi}{\partial q^i} \rangle = 0, \qquad i = 1, 2, \dots, 4n$$

Differentiate w.r.t. t twice

$$egin{array}{rll} \langle Y_{tt}, rac{\partial \Psi}{\partial q^i}
angle &=& \mathcal{O}(\epsilon) \ \langle -LY + k, rac{\partial \Psi}{\partial q^i}
angle &=& \mathcal{O}(\epsilon) \ \langle \Psi_{ au au}, rac{\partial \Psi}{\partial q^i}
angle &=& \mathcal{O}(\epsilon) \end{array}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Recall L² orthogonality constraint

$$\langle Y, \frac{\partial \Psi}{\partial q^i} \rangle = 0, \qquad i = 1, 2, \dots, 4n$$

Differentiate w.r.t. t twice

$$egin{array}{rll} \langle Y_{tt}, rac{\partial \Psi}{\partial q^i}
angle &=& \mathcal{O}(\epsilon) \ \langle -LY + k, rac{\partial \Psi}{\partial q^i}
angle &=& \mathcal{O}(\epsilon) \ \langle \Psi_{ au au}, rac{\partial \Psi}{\partial q^i}
angle &=& \mathcal{O}(\epsilon) \end{array}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Geodesic flow (with $O(\varepsilon)$ correction).

Summary: the ODE/PDE system

$$Y_{tt} + LY = k + \varepsilon j$$

$$q_{\tau\tau}^{i} + \Gamma(q)_{jk}^{i} q_{\tau}^{j} q_{\tau}^{k} = \varepsilon f^{i}(q, q_{\tau}, Y, Y_{t}, \varepsilon)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Summary: the ODE/PDE system

$$Y_{tt} + LY = k + \varepsilon j$$

$$q_{\tau\tau}^{i} + \Gamma(q)_{jk}^{i} q_{\tau}^{j} q_{\tau}^{k} = \varepsilon f^{i}(q, q_{\tau}, Y, Y_{t}, \varepsilon)$$

Short time existence theorem

There exist ε_* , T > 0, depending only on Γ , such that, for all $\varepsilon \in (0, \varepsilon_*]$ and any initial data

$\|Y(0)\|_3^2 + \|Y_t(0)\|_2^2 + |q(0)|^2 + |q_t(0)|^2 \le \Gamma^2$

the system has a unique solution

 $(Y,q) \in C^0([0,T], H^3 \oplus \mathbb{R}^{4n}) \cap \cdots \cap C^3([0,T], H^0 \oplus \mathbb{R}^{4n})$

$$Y_{tt} + LY = k + \varepsilon j$$

$$q_{\tau\tau}^{i} + \Gamma(q)_{jk}^{i} q_{\tau}^{j} q_{\tau}^{k} = \varepsilon f^{i}(q, q_{\tau}, Y, Y_{t}, \varepsilon)$$

Short time existence theorem

There exist ε_* , T > 0, depending only on Γ , such that, for all $\varepsilon \in (0, \varepsilon_*]$ and any initial data

$\|Y(0)\|_3^2 + \|Y_t(0)\|_2^2 + |q(0)|^2 + |q_t(0)|^2 \leq \Gamma^2$

the system has a unique solution

 $(Y,q) \in C^0([0,T], H^3 \oplus \mathbb{R}^{4n}) \cap \cdots \cap C^3([0,T], H^0 \oplus \mathbb{R}^{4n})$

Proof: Picard's method.

• Coercivity: show that $\langle LY, LLY \rangle$ controls $||Y||_3^2$, and $||LY_t||_0^2$ controls $||Y_t||_2^2$ for $Y \perp \ker J$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Coercivity: show that $\langle LY, LLY \rangle$ controls $||Y||_3^2$, and $||LY_t||_0^2$ controls $||Y_t||_2^2$ for $Y \perp \ker J$
- Energy Estimates: show that

$$Q(t) = \frac{1}{2} \| (LY)_t \|_0^2 + \frac{1}{2} \langle LY, LLY \rangle$$

grows slowly (would be conserved if ψ were constant, $\varepsilon = 0$).

- Coercivity: show that $\langle LY, LLY \rangle$ controls $||Y||_3^2$, and $||LY_t||_0^2$ controls $||Y_t||_2^2$ for $Y \perp \ker J$
- Energy Estimates: show that

$$Q(t) = \frac{1}{2} \| (LY)_t \|_0^2 + \frac{1}{2} \langle LY, LLY \rangle$$

grows slowly (would be conserved if ψ were constant, $\varepsilon = 0$). • $\Rightarrow ||Y||_3 + ||Y_t||_2$ remains bounded for time T/ε • "Precise conjecture" follows:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

- "Precise conjecture" follows:
- $q(\tau)
 ightarrow q_0(\tau)$ uniformly on [0, T]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

- "Precise conjecture" follows:
- $q(\tau)
 ightarrow q_0(\tau)$ uniformly on [0, T]
- $||Y||_3$ remains bounded for $t \in [0, T/\epsilon]$, and

 $\|Y\|_{C^0} \le c \|Y\|_2 \le c \|Y\|_3,$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

so $\phi_{\epsilon}(\tau)$ converges uniformly on [0, T] to $\psi(q_0(\tau))$

Proved for Σ = T², but argument immediately generalizes to any compact Riemann surface

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

- Proved for Σ = T², but argument immediately generalizes to any compact Riemann surface
- Loosely: the geodesic approximation "works" for times of order $1/\epsilon$ when the initial velocities are of order ϵ

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Proved for Σ = T², but argument immediately generalizes to any compact Riemann surface
- Loosely: the geodesic approximation "works" for times of order $1/\epsilon$ when the initial velocities are of order ϵ

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Can't do much better: M_n incomplete!

- Proved for $\Sigma = T^2$, but argument immediately generalizes to any compact Riemann surface
- Loosely: the geodesic approximation "works" for times of order $1/\epsilon$ when the initial velocities are of order ϵ

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Can't do much better: M_n incomplete!
- *T* depends on how close φ_0 is to ∂M_n .
Concluding remarks

- Proved for $\Sigma = T^2$, but argument immediately generalizes to any compact Riemann surface
- Loosely: the geodesic approximation "works" for times of order $1/\epsilon$ when the initial velocities are of order ϵ
- Can't do much better: M_n incomplete!
- *T* depends on how close φ_0 is to ∂M_n .
- Geodesic approx. certainly fails very close to blow-up (Numerics: Linhart-Sadun, Bizoń-Chmaj-Tabor, Analysis: Rodnianski and Sterbenz)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <