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@ Eg.N=S?CRS:

AQ—(¢-A9)p=0

Static Heisenberg ferromagnet.
@ Conformally invariant in dimension 2.
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Domain Lorentzian (E(¢®) now S(@)).
(M,n) = (R x X, di* — g5)

S(@)z/Rdt{;/chfz—;/zdcplz}

(O0)(t,x) L ToxyN  forall (t,x) e M
where (] =07 — Ay.

@ Obviously, static wave maps are harmonic maps ¥ — N
@ dimX = 2 most interesting
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Antiferromagnets

@ x=0u9, y =0, t =215
@ Assumption:

o e o e e C
e O o e O o AOL,B o A(ij)
O e O e O e cC B(X,B o~y B(x,y)
e O © O e O e Jij J(x,y)

@ New fields: m= %(A+B) = 0(9), n= %(A— B)

n x ng=J2n x (N +ny,) + O(3)
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Antiferromagnets

@ Leading order

nx (ng —JPny, —Jd°ny,) =0

@ Wave map flow n: R x ¥ — S? where ¥ has metric

gs = J(x,y) 2(ax®+ dy?)

@ Static problem: conformally invariant, hence independent of J
@ Boundary condition: ¥ = R? U {co} ~ S?
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@ ¢:M— N, (M ,oM) compact co-Kahler, (N, ®") Kahler
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o E(p) = [ a0l =2 [ (4ol +1d"0F) = E0) + E'(9)

1
o Fact: K(¢) = E'(9) — E"(9) = ; (0", ¢"0") .-
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Harmonic maps between Kahler manifolds (Lichnerowicz)

¢©:M— N, (M,o") compact co-Kahler, (N,®") Kahler

d“o: TM&T'M— T'N&T'N
¢

= [ 1ol =7 [ (40P +14"9?) = £'(0) + E'(0)

awKwrzEwrf%wzgm,wmnz

Corollary: K() is a homotopy invariant

Corollary: Let ¢ be holomorphic and y be homotopic to ¢. Then

i.e. Holomorphic maps minimize E in their homotopy class.
¢ : ¥ — S%: E > 4mn, equality iff holomorphic
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~ bo+biz+-- 4 byz"

u(z)

@ Boundary condition: b, = 0. Energy localizes around zeros of u

VN <
AN

/Z

@ Moduli space M,, C C?"
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Geodesic approximation (Ward, after Manton)

4mtn

]
@ Wave map flow conserves E;; = E(@) + 5/ ¢ [2
b

@ Constrain @(t) to M,
1
s = [atly [l - (o)}
>
1 ..
Sl, = [ dt{5¥(6.9) ~4mn)

Geodesic motion on (M,,y) where y = L? metric.
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Compact domains

@ X noncompact, y singular (non-normalizable zero-modes)
@ X compact, y well defined on whole of TM,,
@ Two ways to compactify:

o J(x,y) unbounded, e.g. J(x,y) =1+ x>+ y? =¥ =82
o Impose periodicity, J =constant, ¥ = T?
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Compact domains

Theorem (Sadun,JMS)

Let > be a compact Riemann surface with metric gs, M,, be the
(smooth locus) of the space of degree n holomorphic maps ¥ — S?,
andy be the L? metric on M,,. Then (M,,Y) is geodesically incomplete.

Proof: Let up € M,,. Then kup, k =1,2,3... is a Cauchy sequence in
M. Its pointwise limit is discontinuous, so the sequence does not
converge. [.
@ As k — oo, energy localizes around zeros of uy, i.e. lumps shrink
and collapse
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M;(S?) (JMS, Baptista)

e M; =Rat; = PL(2,C) = SO(3) x R®* = TSO(3) = ... C CP®
@ Cohomogeneity 1 SO(3) x SO(3) action

S0(3) §2x §2

50(3) xS?
@ Kabhler, finite diameter and volume, Ricci positive, unbded scalar
curvature

@ Geodesic flow complicated. Generically lumps do not travel on
great circles
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Geometry of M,(X)

@ My(T2) =[T? x Raty]/[Z2 x Z5], finite volume and diameter
(JMS), numerics (Cova)

@ M,(R x S') geodesic flow (Romao)

e M;7(S?) =R x S volume, total Gauss curvature, lifted geodesic
flow (McGlade)

@ Spectral geometry of My (82): quantum dynamics of a lump on S?
(Krusch-JMS)

2nd strand: Prove conjecture (geodesic flow in M, approximates wave
map flow)
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Precise conjecture

Consider one-parameter family of Cauchy problems for wave map flow
RxY — S2:

9(0) =90,  ¢:(0) =0
where @o € Mp,, 91 € To,M, and € > 0.
There exist T > 0 and €, > 0 (depending on (®o,®+)) such that, for all
€ € (0,€,], Cauchy problem has a unique solution for t € [0, T /¢].
Furthermore, the time re-scaled solution

(pﬁ: [07 T]XZ_>827 (pS(T>X):(p(T/£7X)

converges uniformly to W : [0, T] x ¥ — S?, the geodesic in M, with
the same initial data.



Stuart’s method (joint work with Mark Haskins)

We'll sketch the proof in the case ¥ = T2. Ingredients:

@ Wave map eqn for ¢ < coupled ODE/PDE system for
®=y+e?Y



Stuart’s method (joint work with Mark Haskins)

We'll sketch the proof in the case ¥ = T2. Ingredients:
@ Wave map eqn for ¢ < coupled ODE/PDE system for
®=y+e?Y
@ Short time existence and uniqueness theorem for this system (in
a suitable Sobolev space)



Stuart’s method (joint work with Mark Haskins)

We'll sketch the proof in the case ¥ = T2. Ingredients:
@ Wave map eqn for ¢ < coupled ODE/PDE system for
®=y+e?Y
@ Short time existence and uniqueness theorem for this system (in
a suitable Sobolev space)
© Coercivity of the Hessian (and “higher” Hessian)



Stuart’s method (joint work with Mark Haskins)

We'll sketch the proof in the case ¥ = T2. Ingredients:
@ Wave map eqn for ¢ < coupled ODE/PDE system for
®=y+e?Y
@ Short time existence and uniqueness theorem for this system (in
a suitable Sobolev space)
© Coercivity of the Hessian (and “higher” Hessian)
@ Energy estimates for Y(t)



Stuart’s method (joint work with Mark Haskins)

We'll sketch the proof in the case ¥ = T2. Ingredients:

@ Wave map eqn for ¢ < coupled ODE/PDE system for
®=y+e?Y

@ Short time existence and uniqueness theorem for this system (in
a suitable Sobolev space)

© Coercivity of the Hessian (and “higher” Hessian)

@ Energy estimates for Y(t)

@ A priori bound
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The moduli space

e dimgM,(T2) =4n(n>2)
@ Choose and fix initial data @y € M, @1 € Ty, M.

@ Choose and fix real local coords g : R*" > U — M,
Denote by y(q) the h-map corresponding to g.
Convenient to demand that @y = y(0) and U = R*".
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Projection to the moduli space

@ Wave map equation

Qtt — Qxx — Qyy + (|(Pt|2 - ‘(PX|2 - ‘(Py‘Z)(P =0

@ Slow time T = &t (book-keeping device)
@ Decompose 0(t) = y(q(t)) +€2Y(t).
e Section:map Z: ¥ — RR®
e Tangent section: Z: ¥ — R3 s.t. Z-y = 0 everywhere

Y is not a tangent section (but it’s close):

1
WE=lof =1 = y-v=—ZeYf

@ Choose g so that y(q) (locally) minimizes || Y| z:

<Y, Z)Lz =0, VZ e T\y(q)Mn'



PDE for Y

YU—FL\VYZK—FSj

where

LyY = =AY =P+ |y, P)Y —2(yy- e+, Y, )y
+2{(¥- Y)AY+ (W Y)wx+ (V- Y), vy}



PDE for Y

YU—FL\VYZK—FEj

where
LyY = =AY =yl + [y, P)Y —2(ye- ity Yy )y
+2{(¥- Y)AY+ (W Y)wx+ (V- Y), vy}
kK = —Yu—|yly

j = j(WaW‘Cv Y, Yt Yy, Y}/)
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@ On T (y 'TS?), Ly = Jy, the Jacobi operator for h-map
dPE(ys)

— 2 :<Y7J Y>7 (Y:a\lf\:O)
ds2 o \ sWUs|s



The (improved) Jacobi operator

Lyy = —AY — (WP + 1wy P)Y —2(y - Y+ vy - Yy )y
+2{(y- Y)AY+ (¥ Y)wx+ (v Y),wy }

@ Ly is self adjoint, elliptic
@ Ly maps tangent sections to tangent sections
@ On T (y 'TS?), Ly = Jy, the Jacobi operator for h-map
d’E
TEW - —(yay). (v =dasleco)
ds R
@ kerLy =kerdy & (V)
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Evolution of g(7)

@ Recall L? orthogonality constraint

v, 2

,Tqi :0, i:1,2,...,4n

since a ; span ker Jy
@ Differentiate w.r.t. t twice

(Y, gw,> = O(g)

oy
39 =)

NG
<\|’m>aq> = O(g)

(=LY + k

Geodesic flow (with O(€) correction).
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Summary: the ODE/PDE system

YetlY = ktgf
G+ T(@pdas = ef(q, Y, Yi€)

Short time existence theorem
There exist €., T > 0, depending only on I, such that, for all € € (0, €, ]
and any initial data

1Y (0)[15 + [ Y:(0)I[5 + [a(0)* +[gc(0)|* < T2
the system has a unique solution

(Y,q) € C°([0, T], H* @ R*)N---nC3([0, T], H* & R*")

Proof: Picard’s method.
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@ Coercivity: show that (LY, LLY) controls || Y
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@ Coercivity: show that (LY, LLY) controls || Y
controls || Y¢||3 for Y L kerJ

@ Energy Estimates: show that

5 and ||LY{]§

1 1
Q(t) = S I(LY)ell§ + 5 (LY, LLY)

grows slowly (would be conserved if y were constant, € = 0).
@ = ||Y|ls+ || Y:|l2 remains bounded for time T /¢
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Convergence

@ “Precise conjecture” follows:
@ g(t) — qo(t) uniformly on [0, T]
@ || Y||3 remains bounded for t € [0, T /€], and

[Ylleo < cllYlz < el Yls,

so ¢¢(T) converges uniformly on [0, T] to y(qo(T))
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Concluding remarks

@ Proved for ~ = T2, but argument immediately generalizes to any
compact Riemann surface

@ Loosely: the geodesic approximation “works” for times of order
1/€ when the initial velocities are of order €

@ Can’t do much better: M, incomplete!
@ T depends on how close @ is to dM,,.

@ Geodesic approx. certainly fails very close to blow-up (Numerics:
Linhart-Sadun, Bizon-Chmaj-Tabor, Analysis: Rodnianski and
Sterbenz)



