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Semilocal vortices

@ Degree n hermitian line bundle L over compact Riemann surface
3. Unitary connexion A.

@ k+1 sections @ = (Qo, ..., 0x)

1. e?
® Energy £ = 5 ||iFall® +ldaol* + = [I1 — |0
e > 0 a parameter
o Neat fact (iFa, |¢*®).2 = [[040]* — [|040]|*
@ Bogomol'nyi bound

— 1 . )
E = 20a9l%+ 55 liFa— (1 —[g) P+ [ iFa>2nn

equality iff

0,0 = 0 (BOG1)
xiFa—e’(1—[of’) = 0 (BOG2)



Semilocal vortices

@ Solutions called "semilocal vortices”. No solutions if
Vol(X) < 2nn/ e
@ Moduli space

M = {Solutions of BOG}/gauge equivalence

@ Nice description if 29 —2 < n < e?Vol(X) /21 (g = genus(X)):
there’s arank r = (k+1)(n— g+ 1) complex vector bundle V
over Js such that M =P(V)

@ In particular, it’s just a projective space if g =0

@ Compact complex mfd of dimension
m=r—1+g=nlk+1)—k(g+1)



Geometry of M

@ Natural Riemannian metric
. . 1 . )
Yar((4,0), (A.9)) = I AllE: + 11617

where we insist that (A, ¢), solution of LINBOG, is L? orthogonal
to comal gauge transforms

1 . .
ESA—P (ip,9) =0 (G1)

@ Kahler w.r.t. complex structure i(A, @) = (*A, i)
@ Baptista has a nice formula for the kahler class

21 2n?
[4,] = 7(VoI(X) — ?n)n + ?9
where
n = ¢«(S), S = antitautological bundle over P(V)

0 = Poincaré dual of 8 divisor on Jy



Geometry of M

@ He deduces enough info about H* (M ,7Z) to be able to compute
Jarn™ A6, whence

Vol(3) = [ [on"

m
= ng:,| k+1)9 ll)! (j;)i<Vol(Z)—Z:n>m_i

Recall m=n(k+1) —k(g+1)




The link with holomorphic maps ¥ — CP*

Bertram-Daskalapoulos-Wentworth
@ Consider dense open subset M, = {[¢,A] : 9 (0) =0} C M
@ Choose a local section € of L. Then @ = (fye, .. ., fx€)
@ [fy,...,f| is independent of choice of €, hence globally defined
@ Map ®:% — CP* must be holomorphic by BOG1 (choose € s.t.
04€ = 0)

@ Hence we have a canonical map j : M, — H, space of degree n
holomorphic maps ¥ — CP*



The link with holomorphic maps ¥ — CP*

Bertram-Daskalapoulos-Wentworth

@ Conversely, given holo ¢ : ¥ — CP* can construct associated
vortex

@ S = tautological bundle over CP¥, L := ®~'S* has degree n

@ Given an arbitrary linear map f : Ck*' — C, n*f is a section of
S*, where m: S — CK*' is the tautological map

Choosing fi(zo, ..., 2k) = zi, get holo sections ¢; = **f; of L
Given any hermitian metricon L, 3! As.t. 5A = 5(L)
Exists unique metric s.t. BOG2 holds (BOG1 automatic)

Gives canonical map h: H — M,

joh=1dys;, hoj=1dy, . Biholomorphism



The link with holomorphic maps ¥ — CP*

o #{ also has a natural L? metric y,.. ® € ToH C (&~ TCPK)

v (6.) = [ |67

@ Convenient to choose FS metric on CP* so that Hopf map
(CK-H D) 82k+1 N (CPK

is a Riemannian submersion (hol. sec. curv. = 4)
@ Relation between 7y, and Y4, on M, = H?
@ Baptista conjectures that h*y,, — Y, pointwise on # as e — oo



Baptista’s conjecture

@ Motivated by naive limit of BOG2, G L and defn of y4,:

1—|pf” = 0 (BOG2)e
<i(pv¢> =0 (GJ—)eaoo
Yac(A.0).(A0) = [ Iof

¢ tangent to unit sphere in L+, pointwise orthogonal to gauge
orbits, so |§|? = |P|24
(8?1 — CP¥ is a Riemannian submersion)

@ Of course, not rigorous



Baptista’s conjecture

@ For each e, can compute
wm
Vol(94,) :/ 29 _\ioi(aM)
M, m

using explicit formula

@ Natural conjecture:

Vol(H) = lim Vol(M,) = %(nVol(Z))m

e—roo

@ Similar conjecture for Einstein-Hilbert action ( [, scal) of H



Why would anyone care about (#,Y;/)?

@ 7 is a soliton moduli space in its own right: sigma model “lumps

@ Holo maps ¢ : (M, cokéhler) — (N, kahler) globally minimize
Dirichlet energy Ey = ||d®||? in their htpy class (Lichnerowicz):

F(®) = [00]* 0] = (wm, " o).z
d
aF(q)[) = <(DM, d(¢;k1d)0)N)>/_2 == 0
Eq(P,holo) = F(®)=F(¢' ~ ®) < Eqg(d)

@ Stable static solutions of ungauged sigma model on R x M

s= [ (18]~ Es(®))

@ Geodesic approximation (Ward, after Manton): Given ®(0) € #,
®(0) € To(0)H small, expect ®(t) to be well-approximated by
geodesic in (H, ).

@ Physical interpretation: antiferromagnetic films (¥ — S?)



Heisenberg antiferromagnet

@ Square lattice of unit spins n : Z2 — S2, constant J > 0

oH

Aj=njx o=, H=) Jnj(Nijii+ni1,)
an,-,- 7

@ Continuum limit? Chessboard, dimerize
1

(Doc,B = E(nwhite_nblack)

1
\UOL,B = E(nwhite + nblack) ~0




Heisenberg antiferromagnet

@ Lattice spacing € — 0, eliminate W, rescale time

dxOb=0

where [J = 07 — J2(03 — 03).

o (Relativistic) sigma model, target S2!

@ Doping (J position dependent): Sigma model on a curved
background gs = (dx? + dy?)/J?

@ Direct physical interpetation of geodesics in (H,y,/) at least for
k = 1 - magnetic bubble dynamics



L? geometry of H

@ Back to general setting # = {holo maps ¥ — CP* of degree n}
@ 7 complex manifold if n large compared to g

@ Noncompact, incomplete, kdhler (w.r.t. Y4/)

@ Explicit formula for 'y, in simplest nontrivial case, ¥ = S k=1

o H = Rat, cCpP?
_ apZ + ay

T apz+ag

&(2)

o H =PSL(2,C)=TSO(3), G= SO(3) x SO(I) acts
isometrically, cohomogneity 1
So(3)xs®

Orbits of Az



L? geometry of H

o e Volume n6/3!, consistent with Baptista’s conjecture

@ Unbounded scalar and holomorphic sectional curvature (no
smooth isometric compactification)

e Set of G invariant kahler metrics on Rat; is interesting. Includes
some with infinite volume (e.g. complete Ricci flat Stenzel metric),
and FS metric on Rat; ¢ CP®

e They all have hidden isometry df : TSO(3) — TSO(3), where
f(x) = x~'. Has strong consequences for spectrum of Laplacian
on Rat;.

@ Can we find any other checks on Baptista’s volume formula for
H?
@ Look for cohomogeneity 1 examples: ¥ = S2, n= 1, general k



aop b()
®([20,21]) = [@a0z0 + boz1,. .., ak20 + bkz1] <>
ag bk

° -{]_l]’k SN CP2k+1

@ yinvariant under action of G = U(k+1) x U(2),
[M] = [UsMU; ]
@ Cohomogeneity one. Each orbit has unique representative

¢H([ZO7Z1]):[;1120721703"'70]’ ‘1121

@ Single exceptional orbit u = 1. All others diffeo G/K where
K=T3xU(k—1)



@ 7Y uniquely determined by one-parameter family of symmetric
bilinear forms
Yu:VuxVy—R
where V, = T¢H7-[
@ Ad(G) invariant inner product on g = u(k+1) D u(2)

((A,B),(A,B)) = ——(trAA' +tr BB')

1
2
Define p = &1, identify Tgx(G/K) = p (well defined up to Ad(K)
e action on p)
Vu = (9/du)&p

@/ou)Dpo ® Py D Py & P @© P
1 1 1 k—1 k—1

@ Ad(K) invariance, hermiticity implies

Y= Ao (1) (0 + 81, )y )+ A1 (1) (. Do, + A (1) . )5, +As (1) )+ Aa () (. )



@ Kahler implies, for all fixed X,Y,Z cp
o([X, Y]y, Z) +cyclicperms = 0
;’“w(x, Y)+0(@/am[X,Y]) = 0
@ = there exists positive increasing function A(u) and constant
B > 0 such that

A () P —1 A A
= ) A1:A2:‘L127+1A; A3:B+§7 A4:B—§.

@ Clearly lim,_,.. A(u) exists, < 2B
@ Regularity implies lim,_, A(u) =0
@ Any G invariant kdhler metric has this structure

4 2
—4uclogu—1 T
ALZZTE‘U l; g‘u s BLQZ—
(12 —1)2 2
2
ue—1 1
Ars = Brs =

w41’ 2



Straightforward computation
1

V2

_,dA
vol = —=A%(B? — A?/4)F 1d—ludy/\voIG/K

Hence every G invariant kdhler metric on }[1_,;(22 has finite
volume!

A()/2B
VO|(-{]'[1,k) = 4\/§V0|(G/K)/ t2(1 . tg)k_1dt
0

Consider the case A(«) = 2B, as holds for L? and FS. Volume
depends only on B! Hence L? volume = volume of FS metric (of
hol sec curv 4/7):

qk+2
(2k+1)!

which agrees with Baptista’s conjecture (we have Vol(X) = )

VO|(}l;7k) =



@ Lamia Algahtani has computed Einstein-Hilbert action of }[1,;(;
also agrees with Baptista’s conjecture

@ Suggests that M is the “right” compactification of # from the
viewpoint of L? geometry




Dilation cylinders

@ X, n, k general
@ Given degree n meromorphic function W on X have dilation
cylinder

Cw = {[uW,1,0,...,0] : u€ C*} C Hy

@ Induced L? metric

WP
= F(u)dudn, F :/

@ Volume of Cy

Vol(Cw) = /(LM)
= /z</cx (1+’|:|V2||W|2)2> [Fubini]

= / n=7Vol(¥X)  independent of W!
b



Dilation cylinders

@ Gives heuristic support for Baptista’'s conjecture in some more
cases

@ ¥ = S? (any metric)

n . .
¢:[Zajz{)szf], ao,...,ane(Ck+1
j=0

Open dense inclusion #;, x < CPk+ntk
@ Assume (pretend) that v, extends smoothly to CP™. Then

vm(ﬂ):/cpm";%f:,;gxm}[)m

where X is a generator of Hy(CP™,Z)
@ Choose X = Cy U {0,000} where W = (zo/21)":

/X 0,7 = Vol(X) = TVol(E)



Dilation cylinders

@ “Hence”
nVol(X)

VollHni) = (a4 )1

as claimed by Baptista
@ Similar argument for & = T2 (any metric), n=2, k =1, Cy,

_ a(z—s)+a

Rat: x ¥ 21 44 d(2) =
o b1 D)= e —s)

also consistent with Baptista’s conjecture:

Vol(Ho,1) = %(m)vm(Z) <:;!(RVOI(Z))3>



Concluding remarks

@ Why would we care about Vol(H) (or Vol(M))?
o Statistical mechanics of geodesic motion on # (or H) at large n
e Controlled by growth of Vol(#) with n and Vol(X)
e Can extract equation of state of a soliton gas (Manton)

@ This all assumes that soliton dynamics is well-approximated by
geodesic motion in M. Is it?

e Aim to prove that real dynamics stays (uniformly) €2 close to
geodesic in M for times of order ¢! if initial velocities are of
order €

e Proved for basic vortices on R? and monopoles on R? (Stuart)

e Proved for $? sigma model on compact ¥ (JMS)

e It's a long and complicated story...



Concluding Remarks

Precise statement of theorem for wave map flow R x ¥ — S2:

@ Let X be a compact Riemann surface of genus g and n > g.

@ For fixed ®y € # and ®; € T, H consider the one parameter
family of wave-map IVPs

®(0) = b, ®4(0) = ey,

parametrized by € > 0.

@ There exist constants T, > 0 and €, > 0 such that for all
€ € (0,€,], the problem has a unique solution for t € [0, 1. /€].

@ Furthermore, the time re-scaled solution
e [0,T] x X — 82, De(T,x) = d(T/8,X)

converges uniformly in C' to W : [0,7,] x £ — S2, the geodesic
in H with the same initial data, as € — 0.



