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Semilocal vortices

Degree n hermitian line bundle L over compact Riemann surface
Σ. Unitary connexion A.

k + 1 sections ϕ = (ϕ0, . . . ,ϕk )

Energy E =
1

2e2 ‖iFA‖2 +‖dAϕ‖2 +
e2

2
‖1−|ϕ|2‖2

e > 0 a parameter

Neat fact 〈iFA, |ϕ|2ω〉L2 = ‖∂Aϕ‖2−‖∂Aϕ‖2

Bogomol’nyi bound

E = 2‖∂Aϕ‖2 +
1

2e2 ‖iFA−e2(1−|ϕ|2)‖2 +
∫

Σ
iFA ≥ 2πn

equality iff

∂Aϕ = 0 (BOG1)

∗iFA−e2(1−|ϕ|2) = 0 (BOG2)



Semilocal vortices

Solutions called ”semilocal vortices”. No solutions if
Vol(Σ) < 2πn/e2

Moduli space

M = {Solutions of BOG}/gauge equivalence

Nice description if 2g−2 < n < e2Vol(Σ)/2π (g = genus(Σ)):
there’s a rank r = (k + 1)(n−g + 1) complex vector bundle V
over JΣ such that M = P(V )

In particular, it’s just a projective space if g = 0

Compact complex mfd of dimension
m = r −1 + g = n(k + 1)− k(g + 1)



Geometry of M

Natural Riemannian metric

γM ((Ȧ, ϕ̇),(Ȧ, ϕ̇)) =
1

4e2 ‖Ȧ‖
2
L2 +‖ϕ̇‖2

L2

where we insist that (Ȧ, ϕ̇), solution of LINBOG, is L2 orthogonal
to ∞mal gauge transforms

1
4e2 δȦ + 〈iϕ, ϕ̇〉= 0 (G ⊥)

Kähler w.r.t. complex structure i(Ȧ, ϕ̇) = (∗Ȧ, iϕ̇)

Baptista has a nice formula for the kähler class

[ωM ] = π(Vol(Σ)− 2π

e2 n)η +
2π2

e2 θ

where

η = c1(S′), S′ = antitautological bundle over P(V )

θ = Poincaré dual of θ divisor on JΣ



Geometry of M

He deduces enough info about H∗(M ,Z) to be able to compute∫
M ηm−i ∧θi , whence

Vol(M ) =
1

m!

∫
M

[ωM ]m

= π
m

g

∑
i=0

g!(k + 1)g−i

i!(m− i)!(g− i)!

(
2π

e2

)i(
Vol(Σ)− 2π

e2 n

)m−i

Recall m = n(k + 1)− k(g + 1)



The link with holomorphic maps Σ→ CPk

Bertram-Daskalapoulos-Wentworth

Consider dense open subset Mo = {[ϕ,A] : ϕ−1(0) = /0} ⊂M
Choose a local section ε of L. Then ϕ = (f0ε, . . . , fk ε)

[f0, . . . , fk ] is independent of choice of ε, hence globally defined

Map Φ : Σ→ CPk must be holomorphic by BOG1 (choose ε s.t.
∂Aε = 0)

Hence we have a canonical map j : Mo→H , space of degree n
holomorphic maps Σ→ CPk



The link with holomorphic maps Σ→ CPk

Bertram-Daskalapoulos-Wentworth

Conversely, given holo Φ : Σ→ CPk can construct associated
vortex

S = tautological bundle over CPk , L := Φ−1S∗ has degree n

Given an arbitrary linear map f : Ck+1→ C, π∗f is a section of
S∗, where π : S→ Ck+1 is the tautological map

Choosing fi(z0, . . . ,zk ) = zi , get holo sections ϕi = Φ∗π∗fi of L

Given any hermitian metric on L, ∃ ! A s.t. ∂A = ∂
(L)

Exists unique metric s.t. BOG2 holds (BOG1 automatic)

Gives canonical map h : H →Mo

j ◦h = IdH , h ◦ j = IdMo
. Biholomorphism



The link with holomorphic maps Σ→ CPk

H also has a natural L2 metric γH . Φ̇ ∈ TΦH ⊂ Γ(Φ−1TCPk )

γH (Φ̇, Φ̇) =
∫

Σ
|Φ̇|2

Convenient to choose FS metric on CPk so that Hopf map

Ck+1 ⊃ S2k+1→ CPk

is a Riemannian submersion (hol. sec. curv. = 4)

Relation between γH and γM on Mo ≡H ?

Baptista conjectures that h∗γM → γH pointwise on H as e→ ∞



Baptista’s conjecture

Motivated by naive limit of BOG2, G ⊥ and defn of γM :

1−|ϕ|2 = 0 (BOG2)e→∞

〈iϕ, ϕ̇〉 = 0 (G ⊥)e→∞

γM ((Ȧ, ϕ̇),(Ȧ, ϕ̇)) =
∫

Σ
|ϕ̇|2

ϕ̇ tangent to unit sphere in Lk+1, pointwise orthogonal to gauge
orbits, so |ϕ̇|2 = |Φ̇|2FS
(S2k+1→ CPk is a Riemannian submersion)

Of course, not rigorous



Baptista’s conjecture

For each e, can compute

Vol(Mo) =
∫

Mo

ωm
M

m!
= Vol(M )

using explicit formula

Natural conjecture:

Vol(H ) = lim
e→∞

Vol(Mo) =
ng

m!
(πVol(Σ))m

Similar conjecture for Einstein-Hilbert action (
∫

H scal) of H



Why would anyone care about (H ,γH )?

H is a soliton moduli space in its own right: sigma model “lumps”

Holo maps Φ : (M,cokähler)→ (N,kähler) globally minimize
Dirichlet energy Ed = ‖dΦ‖2 in their htpy class (Lichnerowicz):

F(Φ) := ‖∂Φ‖2−‖∂Φ‖2 = 〈ωM ,Φ
∗
ωN〉L2

d
dt

F(Φt) = 〈ωM ,d(Φ∗t ιΦ̇ωN)〉L2 = 0

Ed (Φ,holo) = F(Φ) = F(Φ′ ∼ Φ)≤ Ed (Φ′)

Stable static solutions of ungauged sigma model on R×M

S =
∫
R

(‖Φ̇‖2−Ed (Φ))

Geodesic approximation (Ward, after Manton): Given Φ(0) ∈H ,
Φ̇(0) ∈ TΦ(0)H small, expect Φ(t) to be well-approximated by
geodesic in (H ,γH ).

Physical interpretation: antiferromagnetic films (Σ→ S2)



Heisenberg antiferromagnet

Square lattice of unit spins n : Z2→ S2, constant J > 0

ṅij = nij ×
∂H
∂nij

, H = ∑
ij

Jnij · (ni,j+1 + ni+1,j)

Continuum limit? Chessboard, dimerize

Φα,β :=
1
2

(nwhite−nblack )

Ψα,β :=
1
2

(nwhite + nblack )≈ 0



Heisenberg antiferromagnet

Lattice spacing ε→ 0, eliminate Ψ, rescale time

Φ×�Φ = 0

where � = ∂2
t − J2(∂2

x −∂2
y ).

(Relativistic) sigma model, target S2!

Doping (J position dependent): Sigma model on a curved
background gΣ = (dx2 + dy2)/J2

Direct physical interpetation of geodesics in (H ,γH ) at least for
k = 1 - magnetic bubble dynamics



L2 geometry of H

Back to general setting H = {holo maps Σ→ CPk of degree n}
H complex manifold if n large compared to g

Noncompact, incomplete, kähler (w.r.t. γH )
Explicit formula for γH in simplest nontrivial case, Σ = S2, k = 1

H = Rat1 ⊂ CP3

Φ(z) =
a0z + a1

a2z + a3

H = PSL(2,C) = TSO(3), G = SO(3)×SO(3) acts
isometrically, cohomogneity 1



L2 geometry of H

Volume π6/3!, consistent with Baptista’s conjecture
Unbounded scalar and holomorphic sectional curvature (no
smooth isometric compactification)
Set of G invariant kähler metrics on Rat1 is interesting. Includes
some with infinite volume (e.g. complete Ricci flat Stenzel metric),
and FS metric on Rat1 ⊂ CP3

They all have hidden isometry df : TSO(3)→ TSO(3), where
f (x) = x−1. Has strong consequences for spectrum of Laplacian
on Rat1.

Can we find any other checks on Baptista’s volume formula for
H ?

Look for cohomogeneity 1 examples: Σ = S2, n = 1, general k



H1,k

Φ([z0,z1]) = [a0z0 + b0z1, . . . ,ak z0 + bk z1]↔


 a0 b0

...
...

ak bk




H1,k ↪→ CP2k+1

γ invariant under action of G = U(k + 1)×U(2),
[M] 7→ [U1MU−1

2 ]

Cohomogeneity one. Each orbit has unique representative

Φµ([z0,z1]) = [µz0,z1,0, . . . ,0], µ≥ 1

Single exceptional orbit µ = 1. All others diffeo G/K where
K = T 3×U(k−1)



H1,k

γ uniquely determined by one-parameter family of symmetric
bilinear forms

γµ : Vµ×Vµ→ R
where Vµ = TΦµH
Ad(G) invariant inner product on g = u(k + 1)⊕u(2)

〈(A,B),(A′,B′)〉=−1
2

(trAA′+ trBB′)

Define p = k⊥, identify TgK (G/K ) = p (well defined up to Ad(K )
action on p)

Vµ = 〈∂/∂µ〉⊕p

=
〈∂/∂µ〉⊕p0 ⊕ pµ ⊕ p̃µ ⊕ p̂ ⊕ p̌

1 1 1 k−1 k−1

Ad(K ) invariance, hermiticity implies

γµ = A0(µ)(dµ2 +8µ2〈,〉p0)+A1(µ)〈,〉pµ +A2(µ)〈,〉p̃µ
+A3(µ)〈,〉p̂+A4(µ)〈,〉p̌



H1,k

Kähler implies, for all fixed X ,Y ,Z ∈ p

ω([X ,Y ]p,Z ) + cyclic perms = 0
d
dµ

ω(X ,Y ) + ω(∂/∂µ, [X ,Y ]p) = 0

⇒ there exists positive increasing function A(µ) and constant
B > 0 such that

A0 =
A′(µ)

4µ
, A1 = A2 =

µ2−1
µ2 + 1

A, A3 = B +
A
2
, A4 = B− A

2
.

Clearly limµ→∞ A(µ) exists, ≤ 2B
Regularity implies limµ→1 A(µ) = 0
Any G invariant kähler metric has this structure

AL2 = π
µ4−4µ2 logµ−1

(µ2−1)2 , BL2 =
π

2

AFS =
µ2−1
µ2 + 1

, BFS =
1
2



H1,k

Straightforward computation

vol =
1√
2

A2(B2−A2/4)k−1 dA
dµ

dµ∧ volG/K

Hence every G invariant kähler metric on H1,k≥2 has finite
volume!

Vol(H1,k ) = 4
√

2Vol(G/K )
∫ A(∞)/2B

0
t2(1− t2)k−1dt

Consider the case A(∞) = 2B, as holds for L2 and FS. Volume
depends only on B! Hence L2 volume = volume of FS metric (of
hol sec curv 4/π):

Vol(H1,k ) =
π4k+2

(2k + 1)!

which agrees with Baptista’s conjecture (we have Vol(Σ) = π)



H1,k

Lamia Alqahtani has computed Einstein-Hilbert action of H1,k ;
also agrees with Baptista’s conjecture

Suggests that M is the “right” compactification of H from the
viewpoint of L2 geometry



Dilation cylinders

Σ, n,k general
Given degree n meromorphic function W on Σ have dilation
cylinder

CW = {[µW ,1,0, . . . ,0] : µ ∈ C×} ⊂Hn,k

Induced L2 metric

γ|CW = F(µ)dµdµ, F(µ) =
∫

Σ

|W |2

(1 + |µ|2|W |2)2

Volume of CW

Vol(CW ) =
∫
C×

(∫
Σ

|W |2

(1 + |µ|2|W |2)2

)
=

∫
Σ

(∫
C×

|W |2

(1 + |µ|2|W |2)2

)
[Fubini]

=
∫

Σ
π = πVol(Σ) independent of W !



Dilation cylinders

Gives heuristic support for Baptista’s conjecture in some more
cases

Σ = S2 (any metric)

Φ = [
n

∑
j=0

ajz
j
0zn−j

1 ], a0, . . . ,an ∈ Ck+1

Open dense inclusion Hn,k ↪→ CPnk+n+k

Assume (pretend) that γH extends smoothly to CPm. Then

Vol(H ) =
∫
CPm

ωm
H

m!
=

1
m!

(∫
X

ωH

)m

where X is a generator of H2(CPm,Z)

Choose X = CW ∪{0,∞} where W = (z0/z1)n:∫
X

ωH = Vol(X) = πVol(Σ)



Dilation cylinders

“Hence”

Vol(Hn,k ) =
πVol(Σ)

(nk + n + k)!

as claimed by Baptista

Similar argument for Σ = T 2 (any metric), n = 2, k = 1, C℘,

Rat1×Σ
4:1→H2,1 Φ(z) =

a0℘(z− s) + a1

a2℘(z− s) + a3

also consistent with Baptista’s conjecture:

Vol(H2,1) =
1
4

(2π)Vol(Σ)

(
1
3!

(πVol(Σ))3
)



Concluding remarks

Why would we care about Vol(H ) (or Vol(M ))?
Statistical mechanics of geodesic motion on H (or M ) at large n
Controlled by growth of Vol(H ) with n and Vol(Σ)
Can extract equation of state of a soliton gas (Manton)

This all assumes that soliton dynamics is well-approximated by
geodesic motion in M . Is it?

Aim to prove that real dynamics stays (uniformly) ε2 close to
geodesic in M for times of order ε−1 if initial velocities are of
order ε

Proved for basic vortices on R2 and monopoles on R3 (Stuart)
Proved for S2 sigma model on compact Σ (JMS)
It’s a long and complicated story...



Concluding Remarks

Precise statement of theorem for wave map flow R×Σ→ S2:

Let Σ be a compact Riemann surface of genus g and n ≥ g.

For fixed Φ0 ∈H and Φ1 ∈ TΦ0H consider the one parameter
family of wave-map IVPs

Φ(0) = Φ0, Φt(0) = εΦ1,

parametrized by ε > 0.

There exist constants τ∗ > 0 and ε∗ > 0 such that for all
ε ∈ (0,ε∗], the problem has a unique solution for t ∈ [0,τ∗/ε].

Furthermore, the time re-scaled solution

Φε : [0,τ∗]×Σ→ S2, Φε(τ,x) = Φ(τ/ε,x)

converges uniformly in C1 to Ψ : [0,τ∗]×Σ→ S2, the geodesic
in H with the same initial data, as ε→ 0.


