The geometry of the space of vortices

Martin Speight (Leeds) joint with Nuno Romão (Augsburg) arXiv:1807.00712

Integrable Dynamics, Loughborough, 3/9/18

Dynamics of topological solitons

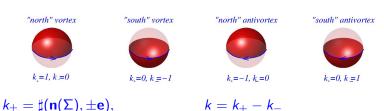
- "Topological solitons" arise quite generically in relativistic classical field theory
- Special situation: theory is "self dual"
 - static solitons exert no net force on each other
 - large moduli space of static n-solitons M_n
 - Examples: instantons, calorons, monopoles, lumps, vortices
- Dynamics: **geodesic** motion in M_n w.r.t. a natural Riemannian metric (Manton)
- Goal: understand this metric
- Today: interesting case model with two different species of vortex

Vortices

•
$$\mathbf{n}: \mathbf{\Sigma} = \mathbb{R}^2 \to S^2$$
, $A \in \Omega^1(\mathbf{\Sigma})$, $B = \mathrm{d}A$, $\mathrm{d}_A \mathbf{n} = \mathrm{d}\mathbf{n} - A\mathbf{e} \times \mathbf{n}$

$$E = \frac{1}{2} \int_{\mathbf{\Sigma}} \left(|\mathrm{d}_A \mathbf{n}|^2 + |B|^2 + (\mathbf{e} \cdot \mathbf{n})^2 \right)$$

- Flux quantization: $\int_{\Sigma} B = 2\pi k$
- Two species of (anti)vortex:



Bogomol'nyi argument

$$0 \leq \frac{1}{2} \int_{\Sigma} (|\mathrm{d}_{A} \mathbf{n}(e_{1}) + \mathbf{n} \times \mathrm{d}_{A} \mathbf{n}(e_{2})|^{2} + |*B - \mathbf{e} \cdot \mathbf{n}|^{2})$$

= $E - 2\pi (k_{+} - k_{-})$

• So $E \ge 2\pi(k_+ - k_-)$ with equality iff

$$\overline{\partial}_A \mathbf{n} = 0, \quad *B = \mathbf{e} \cdot \mathbf{n} \quad (VE)$$

- First order system ⇒ Euler-Lagrange eqns
- Cf BPS monopoles on Σ^3 , instantons on Σ^4

Existence of vortices

• Theorem(Yang 1999 / Sibner-Sibner-Yang 2000)

Gauge equivalence $D_+ = \{z_1^+, z_2^+, \dots, z_{k_+}^+\},$ classes of solns $\leftrightarrow D_- = \{z_1^-, z_2^-, \dots, z_{k_-}^-\}$ of (VE) $D_+ \cap D_- = \emptyset$ where $D_+ = \mathbf{n}^{-1}(\pm \mathbf{e})$.

- Moduli space of vortices $M_{k_+,k_-}(\Sigma) = (Sym^{k_+}\Sigma \times Sym^{k_-}\Sigma) \setminus \Delta_{k_+,k_-}$
- If $k_+k_-\neq 0$, $M_{k_+,k_-}(\Sigma)$ is **noncompact** even if Σ compact
- Simplest example $M_{1,1}(\Sigma)=\{(z_+,z_-)\in\Sigma^2:z_+
 eq z_-\}=(\Sigma imes\Sigma)ackslash\Delta$

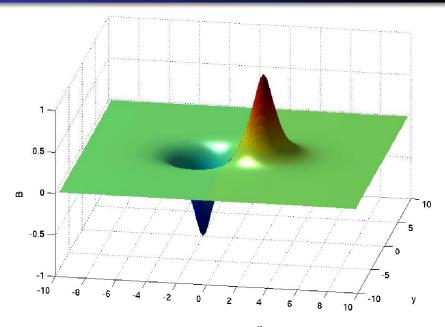
Taubes equation

$$\overline{\partial}_A \mathbf{n} = 0, \quad *B = \mathbf{e} \cdot \mathbf{n}$$

- $h := \log \left(\frac{1 \mathbf{e} \cdot \mathbf{n}}{1 + \mathbf{e} \cdot \mathbf{n}} \right)$
- h has logarithmic singularities at (anti)vortex positions z_i^{\pm}

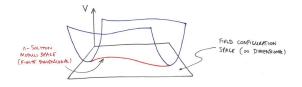
$$\Delta h - 2 \tanh \frac{h}{2} = 4\pi \left(\sum \delta(z - z_i^+) - \sum \delta(z - z_i^-) \right)$$

Taubes equation



The L^2 metric on M_{k_+,k_-} : dynamics

$$S = \frac{1}{2} \int_{\mathbb{R} \times \Sigma} \left(D_{\mu} \mathbf{n} \cdot D^{\mu} \mathbf{n} - \frac{1}{2} F_{\mu\nu} F^{\mu\nu} - (\mathbf{e} \cdot \mathbf{n})^2 \right) = \int_{\mathbb{R}} (T - E) dt$$



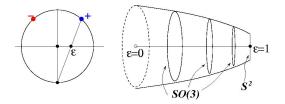
- Restrict S to curve $(\mathbf{n}(t), A(t))$ of solutions of (VE)
- **Geodesic** motion on M_{k_+,k_-} w.r.t. metric γ with

$$\|(\dot{\mathbf{n}}, \dot{A})\| = \int_{\Sigma} (|\dot{\mathbf{n}}|^2 + |\dot{A}|^2)$$

• Fact: γ is Kähler and *localizes* (a la Strachan-Samols)... Have "explicit" formula for γ in terms of behaviour of $\mathbf{n} \cdot \mathbf{e}$ at (anti)vortex positions

What do we know about γ ?

$$M_{1,1}(S_R^2) = (S^2 \times S^2) \setminus \Delta = [SO(3) \times (0,1)] \cup [S^2 \times \{1\}]$$



$$\gamma = A(\varepsilon) \left(\frac{1 - \varepsilon^2}{1 + \varepsilon^2} \sigma_1^2 + \frac{1 + \varepsilon^2}{1 - \varepsilon^2} \sigma_2^2 \right) - \frac{A'(\varepsilon)}{\varepsilon} \left(d\varepsilon^2 + \varepsilon^2 \sigma_3^2 \right)$$

- Complete? Finite volume? Need $A(\varepsilon)$ as $\varepsilon \to 0$
- Behaviour of $\mathbf{e} \cdot \mathbf{n}$ at $z = \pm \varepsilon$

The regularized Taubes equation

• Taubes eqn on S_R^2 , $h := \log \left(\frac{1 - e \cdot n}{1 + e \cdot n} \right)$

$$\Delta_{\mathbb{R}^2} h - rac{8R^2 anh(h/2)}{(1+|z|^2)^2} = 4\pi (\delta(z-arepsilon) - \delta(z+arepsilon))$$

- h has logarithmic singularities at (anti)vortex positions
- Regularize: $\tilde{h} := h \log \left| \frac{z \varepsilon}{z + \varepsilon} \right|^2$
- Dilate: $\hat{h}(z) = \tilde{h}(z/\varepsilon)$
- \hat{h} satisfies a nice elliptic PDE on S^2

$$\Delta_{S^2}\hat{h} - 8R^2\varepsilon^2 \left(\frac{1+|z|^2}{1+\varepsilon^2|z|^2}\right)^2 \frac{|z-1|^2e^{\hat{h}} - |z+1|^2}{|z-1|^2e^{\hat{h}} + |z+1|^2} = 0$$

• Control behaviour of $\partial_1 \hat{h}|_{z=1}$ using elliptic estimates...

Geometry of $M_{1,1}(S^2)$

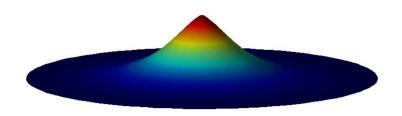
- **Theorem** $(M_{1,1}(S_R^2), \gamma)$ has volume $(2\pi)^2 (4\pi R^2)^2$
- Theorem $(M_{1,1}(S_R^2), \gamma)$ is geodesically incomplete
- Conjecture $(M_{k_+,k_-}(S^2),\gamma)$ has volume

$$(2\pi)^{k_{+}+k_{-}}[A-2\pi(k_{+}-k_{-})]^{k_{+}}[A+2\pi(k_{+}-k_{-})]^{k_{-}}$$

where $A = area(S^2)$.

Vortex thermodynamics...

Geometry of $M_{1,1}(\mathbb{C})=\mathbb{C} imes\mathbb{C}^ imes$



Interesting generalizations

- Replace target S^2 by a general kähler mfd X with holomorphic, hamiltonian action of G
- Moment map $\mu: X \to \mathfrak{g}^*$
- Principal G bundle $P \to \Sigma$, connexion A

$$E = \frac{1}{2} \int_{\Sigma} \left(|\mathrm{d}_A \varphi|^2 + |F_A|^2 + |\mu \circ \varphi|^2 \right)$$

- Solutions of $\overline{\partial}_A \varphi = 0$, $*F_A = \sharp \mu \circ \varphi$ minimize E in their homotopy class.
- Our case: $X = S^2$, $G = S^1$, $\mu(\mathbf{n}) = \mathbf{e} \cdot \mathbf{n} + \tau$ breaks vortex-antivortex symmetry
- $G = T^n$, X toric: should still have metric localization
 - e.g. T^2 action on $\mathbb{C}P^2$: now have **three** types of vortex, which can coalesce pairwise, provided all 3 types never coalesce together
- Chern-Simons deformation almost completely unexplored (only $X = \mathbb{C}$, G = U(1))

