The geometry of the space of BPS vortex-antivortex pairs

Martin Speight (Leeds) joint with Nuno Romão (Augsburg)

Math Phys seminar, Cambridge, 16/5/17

Motivation

- Vortices: simplest topological solitons in gauge theory (2D, U(1), \mathbb{C})
- Nice generalization: Higgs field takes values in a kähler mfd X with hamiltonian action of gauge group G
- G action on X can have more than one fixed point: more than one species of vortex
- Different species can coexist in stable equilibrium but can't coincide
- Noncompact vortex moduli spaces (even on compact domains)
- Completeness? Finite volume? Curvature properties?
- Simplest version already interesting: $X = S^2$, G = U(1)

$\mathbb{C}P^1$ vortices on a Riemann surface Σ

- Fix $\mathbf{e} \in S^2$ (e.g. $\mathbf{e} = (0, 0, 1)$) G = U(1) acts on S^2 by rotations about e
- $P \to \Sigma$ principal G bundle, degree $n \ge 0$, connexion A
- **n** section of $P \times_C S^2$
- Canonical sections $\mathbf{n}_{\infty}(x) = \mathbf{e}, \ \mathbf{n}_{0}(x) = -\mathbf{e}$
- Two integer topological invariants of a section n:

$$n_+ = \#(\mathbf{n}(\Sigma), \mathbf{n}_{\infty}(\Sigma)), \qquad n_- = \#(\mathbf{n}(\Sigma), \mathbf{n}_0(\Sigma))$$

Constraint: $n = n_+ - n_-$ (so we're assuming $n_+ \ge n_-$)

Energy

$$E = \frac{1}{2} \int_{\Sigma} \left(|d_A \mathbf{n}|^2 + |F_A|^2 + (\mathbf{e} \cdot \mathbf{n})^2 \right)$$

where, in a local trivialization

$$d_A$$
n = d **n** - A **e** \times **n**, $F_A = dA$

Aside: $\mu(\mathbf{n}) = -\mathbf{e} \cdot \mathbf{n}$ is moment map for gauge action

(Anti)vortices

"north" vortex

$$n_{+}=1, n_{-}=0$$

"south" vortex

$$n_{+}=0, n_{-}=-1$$

"north" antivortex

$$n_{+} = -1, \ \underline{n} = 0$$

"south" antivortex

$$n_{+}=0, n_{-}=1$$

"Bogomol'nyi" bound (Schroers)

• Given (n, A) define a two-form on Σ

$$\Omega(X,Y) = (\mathbf{n} \times d_A \mathbf{n}(X)) \cdot d_A \mathbf{n}(Y)$$

• Let $e_1, e_2 = Je_1$ be a local orthonormal frame on Σ . Then

$$\mathcal{E} = \frac{1}{2}(|d_{A}\mathbf{n}(e_{1})|^{2} + |d_{A}\mathbf{n}(e_{2})|^{2}) + \frac{1}{2}|F_{A}|^{2} + \frac{1}{2}(\mathbf{e} \cdot \mathbf{n})^{2}$$

$$= \frac{1}{2}|d_{A}\mathbf{n}(e_{1}) + \mathbf{n} \times d_{A}\mathbf{n}(e_{2})|^{2} + \frac{1}{2}|F_{A} - *\mathbf{e} \cdot \mathbf{n}|^{2}$$

$$+ *(\Omega + \mathbf{e} \cdot \mathbf{n}F_{A})$$

$$\implies \mathcal{E} \geq \int_{\Sigma} (\Omega + \mathbf{e} \cdot \mathbf{n}F_{A})$$

• Claim: last integral is a homotopy invariant of (n, A)

- Suffices to show this in case $D = \mathbf{n}^{-1}(\{\mathbf{e}, -\mathbf{e}\}) \subset \Sigma$ finite
- On $\Sigma \backslash D$ have global one-form $\xi = \mathbf{e} \cdot \mathbf{n} (A \mathbf{n}^* d\varphi)$ s.t.

$$\Omega + \mathbf{e} \cdot \mathbf{n} F_A = d\xi$$

Hence

$$\int_{\Sigma} (\Omega + \mathbf{e} \cdot \mathbf{n} F_A) = \int_{\Sigma \setminus D} (\Omega + \mathbf{e} \cdot \mathbf{n} F_A)$$

$$= \lim_{\varepsilon \to 0} \sum_{p \in D} - \oint_{C_{\varepsilon}(p)} \xi$$

$$= 2\pi (n_{\perp} + n_{\perp})$$

"Bogomol'nyi" bound

• Hence $E \ge 2\pi(n_+ + n_-)$ with equality iff

$$\overline{\partial}_A \mathbf{n} = 0 \quad (V1)$$

* $F_A = \mathbf{e} \cdot \mathbf{n} \quad (V2)$

• Note solutions of (V1) certainly have D finite (and $n_{\pm} \geq 0$)

Existence: Yang (\mathbb{C}) /Sibner-Sibner-Yang (compact Σ)

• If ∑ compact, there's a "Bradlow" obstruction

$$2\pi(n_+ - n_-) = \int_{\Sigma} F_A = \int_{\Sigma} \mathbf{e} \cdot \mathbf{n} < \text{Vol}(\Sigma)$$

- **Theorem:** Let $n_+ \ge n_- \ge 0$ and $2\pi(n_+ n_-) < \text{Vol}(\Sigma)$. For each pair of disjoint effective divisors D_+, D_- in Σ of degrees n_+, n_- there exists a unique gauge equivalence class of solutions of (V1), (V2) with $\mathbf{n}^{-1}(\pm \mathbf{e}) = D_{\pm}$.
- Moduli space of vortices: $M_{n_+,n_-} \equiv M_{n_+} \times M_{n_-} \setminus \Delta_{n_+,n_-}$
- If $n_- > 0$, M_{n_+,n_-} is noncompact (in an interesting way)

The "Taubes" equation

$$u = \frac{n_1 + in_2}{1 + n_3}, \qquad h = \log|u|^2, \qquad g_{\Sigma} = \Omega(z) dz d\overline{z}$$

- h finite except at \pm vortices, $h = \mp \infty$.
- $(V1) \Rightarrow A_{\bar{z}} = -i\frac{\partial_{\bar{z}}u}{u}$, eliminate A from (V2)

$$\nabla^2 h - 2\Omega \tanh \frac{h}{2} = 0$$

away from vortex positions

• (+) vortices at z_r^+ , $r = 1, ..., n_+$, (-) vortices at z_r^- , $r = 1, ..., n_-$

$$abla^2 h - 2\Omega \tanh rac{h}{2} = 4\pi \left(\sum_r \delta(z - z_r^+) - \sum_r \delta(z - z_r^-)
ight)$$

• Consider (1,1) vortex pairs on $\Sigma = \mathbb{C}$

$$\nabla^2 h - 2 \tanh \frac{h}{2} = 4\pi \left(\delta(z - \varepsilon) - \delta(z + \varepsilon) \right)$$

• Regularize: $h = \log\left(\frac{|z-\varepsilon|^2}{|z+\varepsilon|^2}\right) + \widehat{h}$

$$\nabla^2 \hat{h} - 2 \frac{|z - \varepsilon|^2 e^{\hat{h}} - |z + \varepsilon|^2}{|z - \varepsilon|^2 e^{\hat{h}} + |z + \varepsilon|^2} = 0$$

• Rescale: $z =: \varepsilon w$

$$\nabla_{w}^{2} \hat{h} - 2\varepsilon^{2} \frac{|w-1|^{2} e^{\hat{h}} - |w+1|^{2}}{|w-1|^{2} e^{\hat{h}} + |w+1|^{2}} = 0$$

• Solve with b.c. $\widehat{h}(\infty) = 0$

Symmetry:

• $F(\hat{h}_{ij}) = 0$, solve with Newton-Raphson

$$\varepsilon = 2$$

$$\varepsilon = 0.5$$

$$\varepsilon = 0.15$$

$$\varepsilon = 0.06$$

The metric on M_{n_+,n_-}

Restriction of kinetic energy

$$T = \frac{1}{2} \int_{\Sigma} |\dot{\mathbf{n}}|^2 + |\dot{A}|^2$$

to M_{n_+,n_-} equips it with a Riemannian metric

• Expand solution h of Taubes eqn about \pm vortex position z_s :

$$\pm h = \log |z - z_s|^2 + a_s + \frac{1}{2}\bar{b}_s(z - z_s) + \frac{1}{2}b_s(\bar{z} - \bar{z}_s) + \cdots$$

- $b_r(z_1, \ldots, z_{n_++n_-})$ (unknown) complex functions
- Proposition (Romão-JMS, following Strachan-Samols):

$$g = 2\pi \left\{ \sum_{r} \Omega(|z_r|) |dz_r|^2 + \sum_{r,s} \frac{\partial b_s}{\partial z_r} dz_r d\bar{z}_s \right\}$$

Holds on any Riemann surface (including C)

The metric on $M_{1,1}(\mathbb{C})$

- $M_{1,1} = (\mathbb{C} \times \mathbb{C}) \setminus \Delta = \mathbb{C}_{com} \times \mathbb{C}^{\times}$
- $M_{1,1}^0 = \mathbb{C}^{\times}$

$$g^0 = 2\pi \left(2 + \frac{1}{\varepsilon} \frac{d}{d\varepsilon} (\varepsilon b(\varepsilon))\right) (d\varepsilon^2 + \varepsilon^2 d\psi^2)$$

where
$$b(\varepsilon) = b_+(\varepsilon, -\varepsilon)$$

- $\varepsilon b(\varepsilon) = \frac{\partial \widehat{h}}{\partial w_1}\Big|_{w=1} 1$
- Can easily extract this from our numerics

The metric on $M_{1,1}(\mathbb{C})$

$$\varepsilon b(\varepsilon) = \left. \frac{\partial \widehat{h}}{\partial w_1} \right|_{w=1} - 1$$

The metric on $M_{1,1}(\mathbb{C})$

$$F(\varepsilon) = 2\pi \left(2 + \frac{1}{\varepsilon} \frac{d(\varepsilon b(\varepsilon))}{d\varepsilon}\right)$$

The metric on $M_{1,1}(\mathbb{C})$: conjectured asymptotics

- Suggests $\widehat{h}_{\varepsilon}(w) \approx \varepsilon f_*(\varepsilon w)$ for small ε , where f_* is fixed?
- Define $f_{\varepsilon}(z) := \varepsilon^{-1} \widehat{h}_{\varepsilon}(\varepsilon^{-1}z)$

$$(\nabla^2 \widehat{h})(w) = 2\varepsilon^2 \frac{|w-1|^2 e^{\widehat{h}(w)} - |w+1|^2}{|w-1|^2 e^{\widehat{h}(w)} + |w+1|^2}$$

$$(\nabla^2 \widehat{h})(w) = 2\varepsilon^2 \frac{|w-1|^2 e^{\widehat{h}(w)} - |w+1|^2}{|w-1|^2 e^{\widehat{h}(w)} + |w+1|^2}$$

• Subst $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$

$$(\nabla^2 f_{\varepsilon})(z) = \frac{2}{\varepsilon} \frac{|z - \varepsilon|^2 e^{\varepsilon f_{\varepsilon}(z)} - |z + \varepsilon|^2}{|z - \varepsilon|^2 e^{\varepsilon f_{\varepsilon}(z)} + |z + \varepsilon|^2}$$

• Subst $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$

$$(\nabla^2 f_{\varepsilon})(z) = \frac{2}{\varepsilon} \frac{|z - \varepsilon|^2 e^{\varepsilon f_{\varepsilon}(z)} - |z + \varepsilon|^2}{|z - \varepsilon|^2 e^{\varepsilon f_{\varepsilon}(z)} + |z + \varepsilon|^2}$$

- Subst $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$
- Take formal limit $\varepsilon \to 0$

$$(\nabla^2 f_*)(z) = f_*(z) - \frac{2(z+\bar{z})}{|z|^2}$$

- Subst $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$
- Take formal limit $\varepsilon \to 0$

$$(\nabla^2 f_*)(z) = f_*(z) - \frac{2(z+\bar{z})}{|z|^2}$$

- Subst $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$
- Take formal limit $\varepsilon \to 0$
- Screened inhomogeneous Poisson equation, source $-4\cos\theta/r$

$$(\nabla^2 f_*)(z) = f_*(z) - \frac{2(z+\bar{z})}{|z|^2}$$

- Subst $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$
- Take formal limit $\varepsilon \to 0$
- Screened inhomogeneous Poisson equation, source $-4\cos\theta/r$
- Unique solution (decaying at infinity)

$$f_*(re^{i\theta}) = \frac{4}{r}(1 - rK_1(r))\cos\theta$$

The metric on $M_{1,1}^0$

• Predict, for small ε ,

$$\widehat{h}(w_1+i0)\approx \varepsilon f_*(\varepsilon w_1)=\frac{4}{w_1}(1-\varepsilon w_1K_1(\varepsilon w_1))$$

whence we extract predictions for $\varepsilon b(\varepsilon)$, $F(\varepsilon)$

$$g^0 = F(\varepsilon)(d\varepsilon^2 + \varepsilon^2 d\psi^2)$$

- Conjecture: $F(\varepsilon) \sim -8\pi \log \varepsilon$ as $\varepsilon \to 0$
- $M_{1.1}$ is **incomplete**, with unbounded curvature

Vortices on S^2 : $M_{1.1}(S^2)$

- $M_{1,1} = S^2 \times S^2 \setminus \Delta = (0,1) \times SO(3) \sqcup \{1\} \times S^2$
- g is SO(3)-invariant, kähler, and invariant under $(z_+, z_-) \mapsto (z_-, z_+)$
- Every such metric takes the form

$$g = -\frac{Q'(\varepsilon)}{\varepsilon}(d\varepsilon^2 + \varepsilon^2\sigma_3^2) + Q(\varepsilon)\left(\frac{1-\varepsilon^2}{1+\varepsilon^2}\sigma_1^2 + \frac{1+\varepsilon^2}{1-\varepsilon^2}\sigma_2^2\right),$$

for $Q:(0,1]\to\mathbb{R}$ decreasing with Q(1)=0.

• Once again, can deduce $Q(\varepsilon)$ from $\partial \widehat{h}/\partial w_1$ at w=1+i0

$$abla^2 h - rac{8R^2}{(1+|z|^2)^2} anh rac{h}{2} = 4\pi \left(\delta(z-arepsilon) - \delta(z+arepsilon)
ight)$$

$$abla^2 h - rac{8R^2}{(1+|z|^2)^2} anh rac{h}{2} = 4\pi \left(\delta(z-arepsilon) - \delta(z+arepsilon)
ight)$$

• Regularize:
$$h = \log\left(\frac{|z-\varepsilon|^2}{|z+\varepsilon|^2}\right) + \hat{h}$$

$$abla^2 h - rac{8R^2}{(1+|z|^2)^2} anhrac{h}{2} = 4\pi \left(\delta(z-arepsilon) - \delta(z+arepsilon)
ight)$$

- Regularize: $h = \log\left(\frac{|z-\varepsilon|^2}{|z+\varepsilon|^2}\right) + \widehat{h}$
- Rescale: $z =: \varepsilon w$

$$\nabla_{w}^{2} \widehat{h} - \frac{8R^{2} \varepsilon^{2}}{(1 + \varepsilon^{2} |w|^{2})} \frac{|w - 1|^{2} e^{\widehat{h}} - |w + 1|^{2}}{|w - 1|^{2} e^{\widehat{h}} + |w + 1|^{2}} = 0$$

- Regularize: $h = \log\left(\frac{|z-\varepsilon|^2}{|z+\varepsilon|^2}\right) + \hat{h}$
- Rescale: $z =: \varepsilon w$

$$\nabla_w^2 \hat{h} - \frac{8R^2 \varepsilon^2}{(1 + \varepsilon^2 |w|^2)} \frac{|w - 1|^2 e^{\hat{h}} - |w + 1|^2}{|w - 1|^2 e^{\hat{h}} + |w + 1|^2} = 0$$

- Regularize: $h = \log \left(\frac{|z \varepsilon|^2}{|z + \varepsilon|^2} \right) + \hat{h}$
- Rescale: $z =: \varepsilon w$
- Split S^2 into 2 caps. On lower cap $\varepsilon\mapsto 1/\varepsilon$

•
$$\varepsilon b(\varepsilon) = \widehat{h}_{\mathsf{x}}(1,0) - 1$$

•
$$Q(\varepsilon) = -2\pi \left(1 + 2R^2 + \varepsilon b(\varepsilon) - \frac{4R^2}{1 + \varepsilon^2}\right)$$

The volume of $M_{1,1}(S^2)$

• Formula for g implies finite total volume iff Q is bounded:

$$Vol(M_{1,1}) = \frac{1}{4} (4\pi)^2 \lim_{\varepsilon \to 0} Q(\varepsilon)^2$$

- We can **prove** that $|\widehat{h}_{x}(1,0)| \leq C\varepsilon$, whence
- Theorem (Romão, JMS) Let Σ be a round two-sphere. Then

$$Vol(M_{1,1}(\Sigma)) = (2\pi Vol(\Sigma))^2.$$

The volume of $M_{n,n}(S^2)$

- $M_{n,n}(S^2) = \{ \text{disjoint pairs of } n\text{-divisors on } S^2 \} = (\mathbb{P}^n \times \mathbb{P}^n) \setminus \Delta$
- Consider gauged linear sigma model:
 - fibre C²
 - ullet gauge group $\widetilde{U}(1) imes U(1) : (arphi_1, arphi_2) \mapsto (e^{i(\widetilde{ heta} + heta)} arphi_1, e^{i\widetilde{ heta}} arphi_2)$

$$E_{\tilde{e}} = \frac{1}{2} \int_{\Sigma} \left\{ \frac{|\tilde{F}|^2}{\tilde{e}^2} + |F|^2 + |d_{\tilde{A}}\varphi|^2 + |d_{A}\varphi|^2 + \frac{\tilde{e}^2}{4} (4 - |\varphi_1|^2 - |\varphi_2|^2)^2 + \frac{1}{4} (2 - |\varphi_1|^2)^2 \right\}$$

• For any $\tilde{e} > 0$, has compact moduli space of (n, n)-vortices

$$M_{n,n}^{lin} = \mathbb{P}^n \times \mathbb{P}^n$$

- Baptista found a formula for $[\omega_{L^2}]$ of $M_{n_1,n_2}^{lin}(\Sigma)$
- Can compute $Vol(M_{n,n}^{lin}(S^2))$ by evaluating $[\omega_{L^2}]$ on $\mathbb{P}^1 \times \{p\}$, $\{p\} \times \mathbb{P}^1$

The volume of $M_{n,n}(S^2)$

$$\begin{split} E_{\widetilde{e}} &= \frac{1}{2} \int_{\Sigma} \left\{ \frac{|\widetilde{F}|^2}{\widetilde{e}^2} + |F|^2 + |\mathrm{d}_{\widetilde{A}} \varphi|^2 + |\mathrm{d}_{A} \varphi|^2 + |\mathrm{d}_{A} \varphi|^2 + \frac{\widetilde{e}^2}{4} (4 - |\varphi_1|^2 - |\varphi_2|^2)^2 + \frac{1}{4} (2 - |\varphi_1|^2)^2 \right\} \end{split}$$

- Take formal limit $\tilde{e} \rightarrow 0$:
 - $|\varphi_1|^2 + |\varphi_2|^2 = 4$ pointwise
 - ullet \widetilde{A} frozen out, fibre \mathbb{C}^2 collapses to $S^3/\widetilde{U}(1)=\mathbb{P}^1$
 - E-L eqn for \tilde{A} is algebraic: eliminate \tilde{A} from E_{∞}

$$E_{\infty} = \frac{1}{2} \int_{\Sigma} |F|^2 + 4 \frac{|\mathrm{d}u - iAu|^2}{(1 + |u|^2)^2} + \left(\frac{1 - |u|^2}{1 + |u|^2}\right)^2$$

where
$$u = \varphi_1/\varphi_2$$

• Exactly our P¹ sigma model!

The volume of $M_{n,n}(S^2)$

Leads us to conjecture that

$$Vol(M_{n,n}(S^2)) = \lim_{\widetilde{e} \to \infty} Vol(M_{n,n}^{lin}(S^2)) = \frac{(2\pi Vol(S^2))^{2n}}{(n!)^2}$$

Agrees with $M_{1,1}(S_R^2)$.

 More elaborate choice of linear model gives more general conjecture:

$$Vol(M_{n,m}(S^2)) = \frac{(2\pi)^{n+m}}{n!m!} (Vol(S^2) - \pi(n-m))^n (Vol(S^2) + \pi(n-m))^m$$

- Can generalize to other Σ , Einstein-Hilbert action...
- Similar limit (\mathbb{C}^k fibre, U(1) gauge $\to ungauged \mathbb{P}^{k-1}$ model) studied rigorously by Chih-Chung Liu.

Summary / What next?

- Case $\Sigma = \mathbb{C}$ is most interesting
- $M_{1,1}(\mathbb{C}) = \mathbb{C} \times \mathbb{C} \backslash \Delta = \mathbb{C}_{com} \times \mathbb{C}^{\times}$
- Numerics: metric on SoR \mathbb{C}^{\times} , $g^0 = F(\varepsilon)(d\varepsilon^2 + \varepsilon^2 d\psi^2)$
- ullet Conjectured asymptotics in small arepsilon region

$$F(\varepsilon) \sim -8\pi \log \varepsilon$$

- Would imply $M_{1,1}(\mathbb{C})$ is incomplete with unbounded scalar curvature
- Can we prove it?
- We can shift the vacuum manifold:

$$\mu(\mathbf{n}) = \tau - \mathbf{e} \cdot \mathbf{n}$$

Case $0 < \tau < 1$ very sparsely explored

