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Vortices: simplest topological solitons in gauge theory (2D,

U(1), C)

@ Nice generalization: Higgs field takes values in a kahler mfd X
with hamiltonian action of gauge group G

@ G action on X can have more than one fixed point: more than
one species of vortex

o Different species can coexist in stable equilibrium — but can’t

coincide

e Noncompact vortex moduli spaces (even on compact
domains)

@ Completeness? Finite volume? Curvature properties?

o Simplest version already interesting: X = S, G = U(1)



CP! vortices on a Riemann surface &

o Fixec S? (e.g. e=(0,0,1))

G = U(1) acts on S? by rotations about e

P — % principal G bundle, degree n > 0, connexion A
n section of P x ¢ S?

Canonical sections no(x) = e, ng(x) = —e

Two integer topological invariants of a section n:

np = #(n(X), (X)),  n=#(n(X),no(¥))

Constraint: n = ny — n_ (so we're assuming ny > n_)

Energy
1

E =5 [ (danl? + FaP + (e )
X

where, in a local trivialization
dan = dn — Ae X n, Fa=dA

Aside: p1(n) = —e - n is moment map for gauge action



(Anti)vortices

"north" vortex "north" antivortex

n=1,n=0 n=—1 n=0

"south” vortex "south" antivortex

n=0n=1



“Bogomol'nyi” bound (Schroers)

@ Given (n, A) define a two-form on X

Q(X,Y) = (n x dan(X)) - dan(Y)

@ Let e, e = Je; be a local orthonormal frame on . Then
1 2 2 1 2 1 2
£ = S(dan(en)? + [dan(e)?) + 5IFal + 5 (e )

1 1
= 5\dAn(el)—i—nxdAn(eg)F—i—E]FA—>x<e.n]2
+x(Q+e-nFp)
== E > /(Q+e-nFA)
px

e Claim: last integral is a homotopy invariant of (n, A)



“Bogomol'nyi” bound

o Suffices to show this in case D = n~1({e, —e}) C X finite
@ On X\ D have global one-form £ = e - n(A — n*dyp) s.t.

Q+e-nfFy=d¢
@ Hence
/(Q+e-nFA) :/ (Q+e-nFa)
P Y\D
= |im j{
H’Z -(p)

= 27r(n+ +n_



“Bogomol'nyi” bound

e Hence E > 27(n4 + n_) with equality iff

dan = 0 (V1)
xFa = e-n (V2)

@ Note solutions of (V1) certainly have D finite (and ny > 0)



Existence: Yang (C)/Sibner-Sibner-Yang (compact )

If ¥ compact, there's a “Bradlow” obstruction

2m(ny — n_ /FA—/e n < Vol(X

Theorem: Let n, > n_ >0 and 27(ny — n_) < Vol(X). For
each pair of disjoint effective divisors Dy, D_ in ¥ of degrees
n4, n— there exists a unique gauge equivalence class of
solutions of (V1), (V2) with n"!(+e) = D...

Moduli space of vortices: M, o = My, x M, \Ap, o

If n_ >0, M,, »_ is noncompact (in an interesting way)



The “Taubes” equation

ny 4+ ing

1 h = log |ul?, gy = Q(z)dzdz

u =

@ h finite except at + vortices, h = Foo.
o (V1) = A; = —iaiu“, eliminate A from (V2)

h
V2h — 2Q tanh 5=0
away from vortex positions

o (+) vortices at z;", r =1,...,ny, (—) vortices at z,,
r=1,...,n_

h
2 _ + —
\% h—2Qtanh2—47r<§r Nz—2z")— gr 0z — z ))

o Consider (1,1) vortex pairs on ¥ = C



Solving the (1,1) Taubes equation (numerically)

V2h — 2tanh g — 4 (§(z —2) — 6(z + &)

e b |z—e]? h
@ Regularize: h = log e +h

N L I IR
|z — |2l + |z + ¢]?

@ Rescale: z =: ew

-~ w— 1]2eh — w + 1[?
Vﬁ,h7252‘ Fe” — | " g
lw — 1[2eh + |w + 1|2

@ Solve with b.c. ﬁ(oo) =0



Solving the (1,1) Taubes equation (numerically)

@ Symmetry:

-1 1 w1
—vortex +vortex
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-1
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Solving the (1,1) Taubes equation (numerically)

@ Symmetry:

-1 1 w1
—vortex +vortex

° F(/f;u) = 0, solve with Newton-Raphson



(1,1) vortices
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(1,1) vortices

52015 X



(1,1) vortices

€ =0.06 x



The metricon M,, ,
@ Restriction of kinetic energy
_1 12 2
T= In|* + [A
2 )

to My, »_ equips it with a Riemannian metric
@ Expand solution h of Taubes eqn about + vortex position zs:

1- 1
+h = log ’Z—zs‘2+as—|— 5bs(z—zs)—|— E[35(2_25) 4+

® be(zi,...,2n,+n_) (unknown) complex functions
e Proposition (Rom3o-JMS, following Strachan-Samols):

ob

g =2rm {Z Q(|z|)|dz|> + Z 8zj dz,d?s}
r r,s

Holds on any Riemann surface (including C)




The metric on M; ;(C)

) M171 = (C X (C)\A = Ccom x C*
° M?,l =C~

g’ =2r <2 + 15(513(5))) (de? + e2dv?)

e de

where b(e) = by (g, —¢)

dh
@ cb(e) = - 1
( ) Iwy w=1
@ Can easily extract this from our numerics




The metric on M; ;(C)

hhat(w1+i0)




The metric on M; ;(C)

Fi2n

F(e) = 2r <2 + 1d<b<)>)

de



The metric on M 1(C): conjectured asymptotics

27 (2 + 4Ko(e) — 2eKi(e)) ~ —8mloge
2
= 27 <2 + q2K0(2z—:))

s



Self similarity as ¢ — 0
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@ Suggests Fs(w) ~ ef,(ew) for small £, where f, is fixed?
o Define £.(z) := e 1h.(c12)



Self similarity as ¢ — 0

w i X ¢=0.09

100




Self similarity as ¢ — 0
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Self similarity as ¢ — 0
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Self similarity as ¢ — 0

o, X £=0.09
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Self similarity as ¢ — 0

() = 221 L) w417
lw — 12eh(w) + |w + 1|2



Self similarity as ¢ — 0

() = 221 L) w417
lw — 12eh(w) + |w + 1|2

@ Subst }I\(W) = efz(ew)



Self similarity as ¢ — 0

2|z — e @) — |z 4 ]2
ez —ef2esf:(2) 4 |z 4 €2

(V2£)(2)

o Subst h(w) = cf.(ew)



Self similarity as ¢ — 0

2|z — e @) — |z 4 ]2

2
f‘
(V£)(2) €|z — el2eef(2) 4 |z + €2

o Subst h(w) = cf.(ew)

@ Take formal limit e — 0



Self similarity as ¢ — 0

(V2£)(2) = fi(2) —

@ Subst F(W) =ef(ew)

@ Take formal limit e — 0



Self similarity as ¢ — 0
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@ Screened inhomogeneous Poisson equation, source —4 cosf/r



Self similarity as ¢ — 0

(V2£)(2) = fi(2) —

@ Subst F(W) =ef(ew)
@ Take formal limit ¢ — 0
@ Screened inhomogeneous Poisson equation, source —4 cosf/r

e Unique solution (decaying at infinity)

£(rei?) = %(1 ~ Ky (r)) cos 6



Self similarity as ¢ — 0

1 (x)




The metric on M7,

@ Predict, for small ¢,

~

4
h(wy + i0) = ef.(ewy) = Wl(l —ewy Ki(ew))

whence we extract predictions for eb(e), F(¢)

g% = F(E)(d€2 + €2d1/)2)

e Conjecture: F(g) ~ —8mloge ase — 0
@ My 1 is incomplete, with unbounded curvature




Vortices on S2: My 1(S?)

SO(3)

o Mi1=52xSA\A=(0,1) x SO(3)U {1} x S2
e g is SO(3)-invariant, kahler, and invariant under
(z4,z-) — (2=, z4)
@ Every such metric takes the form
Q'(e)

g = _T(d82 +£%03) + Q(e) (

1—-¢2 , 1462,
14271 T 1 2%

for Q : (0,1] — R decreasing with Q(1) = 0.
e Once again, can deduce Q(¢) from 9h/0wy at w = 1 + i0



Solving the (1,1) Taubes equation on S? (numerically)




Solving the (1,1) Taubes equation on S? (numerically)

8R? h

V2h - mtanh 5= 4 (6(z —€) —0(z+¢))

@ Regularize: h = log <|Z_£‘2) +h

|z+-¢]?



Solving the (1,1) Taubes equation on S? (numerically)

e b |z—¢]? h
@ Regularize: h = log e +h

@ Rescale: z =: ew



Solving the (1,1) Taubes equation on S? (numerically)

o~ 8R2%2  |w—1PReh —|w+ 12
Vuh = G wp 2h ;=0
(L+e[wl?) |w — 12eh + |w + 1|

e b |z—¢? h
@ Regularize: h = log e + h

@ Rescale: z =: ew



Solving the (1,1) Taubes equation on S? (numerically)

o~ BR22  |w—1Peh —|w+ 12
Vil = T 2w 20h ;=0
lw — 1|2l + |w + 1]

e b — |z—¢]? n
@ Regularize: h = log Z7e? + h

@ Rescale: z =: ew

e Split S? into 2 caps. On lower cap ¢ +— 1/¢




Solving the (1,1) Taubes equation on S? (numerically)

FIAR?

2Re

2
e Q(e)=—2rm (1 +2R? + eb(e) — 14+R62>



The volume of M; 1(5?)

e Formula for g implies finite total volume iff Q is bounded:

1(47r)2 lim Q(e)?

VO/(MLl) = Z Jm

o We can prove that [hy(1,0)| < Ce, whence
e Theorem (Rom3o, JMS) Let X be a round two-sphere.Then

Vol(My 1(X)) = (27 Vol (X))



The volume of M, ,(5?)

o M, n(52) = {disjoint pairs of n-divisors on 5%} = (P"xP")\A
@ Consider gauged linear sigma model:
o fibre C?

e gauge group U(l) x U(1) : (p1,92) — (e"(§+9)g01,e"§<,92)
1 F[?
E: = 2/ {‘~2|+’F\2+\d2\902+\dm@’2
Y e
Ez 2 2\2 1 2\2
+ Z(“— l1]® = [p2])" + 2(2 — [p1]%)

e For any e > 0, has compact moduli space of (n, n)-vortices

Milin — pn 5 pn

e Baptista found a formula for [w;2] of M/" (%)

ny,n2
e Can compute Vol(M/"(5%)) by evaluating [w;2] on P* x {p},
{p} x P!



The volume of M, ,(5?)

F2
Ee = 2/{{’ "4 1P+ g0l + ldagl?
52 2 2\2 1 2\2
+I(4—W’1\ — |2[) +Z(2—\901\ )

@ Take formal limit e — 0:
o |p1]* + [2]? = 4 pointwise
o A frozen out, fibre C collapses to 53/U( ) =P!
e E-L eqn for Ais algebraic: eliminate A from E.

1 ldu—iAul2 (1 —|u]?\?
Ex==[ |F?+4 +
2 P (e
where u = 1 /7
o Exactly our P! sigma model!




The volume of M, ,(5?)

@ Leads us to conjecture that

) 2\)2n
Vol(M, 5(S?)) = lim Vol(M]in (%) = (2”‘/("”"()52))
Agrees with My 1(S3).

@ More elaborate choice of linear model gives more general
conjecture:

_ (27r)f7+m

i (Vol(S%) = m(n — m))"(Vol(S%) +(n — m))"

Vol(M,,(5%))

@ Can generalize to other ¥, Einstein-Hilbert action...

o Similar limit (CX fibre, U(1) gauge — ungauged P*~! model)
studied rigorously by Chih-Chung Liu.



Summary / What next?

@ Case ¥ = C is most interesting
Ml,l(C) =Cx (C\A = Ccom x C*
o Numerics: metric on SoR C*, g% = F(e)(de? + £2dv?)

Conjectured asymptotics in small ¢ region

F(e) ~ —8mloge

Would imply M 1(C) is incomplete with unbounded scalar
curvature

Can we prove it?
We can shift the vacuum manifold:

pun)=7—e-n

Case 0 < 7 < 1 very sparsely explored



