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What are vortices?

Kähler mfd X , hamiltonian G action, µ : X → g

Riemann surface Σ, principal G bundle P → Σ

A vortex is a pair (A, ϕ), connexion on P, section of P ×G X ,
s.t.

∂Aϕ = 0

∗FA = −µ(ϕ)

Amazing fact: a vortex (if it exists) minimizes

E (A, ϕ) =
1

2

(
‖FA‖2

L2 + ‖dAϕ‖2
L2 + ‖µ(ϕ)‖2

L2

)
in its “homology class” [Cieliebak-Gaio-Salamon, Mundet i

Riera].
Moduli space of vortices is an object of some interest:

Equivariant Gromov-Witten theory
“Physics” (actually, physics)
Has a natural kähler geometry

We’ll stick to (X ,G ) = (C,U(1)), (S2,U(1)), (C2,T 2).



Plain vanilla vortices: X = C, G = U(1)

µ(z) = 1
2 (|z |2 − τ) (can always shift µ by τ ∈ centre of g)

(Σ, ω) compact

P → Σ of degree n ≥ 0.

ϕ a section of L = P ×U(1) C.

E =
1

2

∫
Σ
|dAϕ|2 + |FA|2 +

1

4
(τ − |ϕ|2)2

Nice identity 〈FA, |ϕ|2ω〉 = |∂Aϕ|2 − |∂Aϕ|2
“Bogomol’nyi” argument:

E =
1

2
‖FA −

1

2
(τ − |ϕ|2)ω‖2

L2 + ‖∂Aϕ‖2
L2 +

τ

2
〈FA, ω〉L2

≥ τπn

with equality iff

∂Aϕ = 0

∗FA =
1

2
(τ − |ϕ|2).



Bradlow’s obstruction

Integrate 2nd vortex equation over Σ:∫
Σ

FA =
1

2

∫
Σ

(τ − |ϕ|2)ω

2πn =
1

2
τVol(Σ)− 1

2
‖ϕ|2L2 ≤

1

2
τVol(Σ)

Hence, if Vol(Σ) < 4πn/τ , no solutions exist

“Dissolved” limit: Vol(Σ) = 4πn/τ . Vortices have ϕ = 0.
Moduli space of vortices = space of constant curvature
connexions on L

Interesting case: Vol(Σ) > 4πn/τ



Existence – Bradlow’s approach

Choose and fix holomorphic structure on L and background
hermitian fibre metric h0

Any other hermitian metric is h = e2uh0 for some u ∈ C∞(Σ)

For each h there exists unique metric connexion A s.t. ∂A = ∂L

Choose and fix ϕ a holomorphic section of L. ∂Aϕ = 0 by defn
of A

2nd vortex equation:

∆u +
1

2
h0(ϕ,ϕ)e2u + (∗F0 −

τ

2
) = 0

There exists a unique solution u of this PDE by results of
Kazdan-Warner

Gauge equivalence class of solution uniquely determined by
divisor of ϕ, i.e. ϕ−1(0) unordered list of n points in Σ with
repeats allowed

Moduli space of n-vortices Mn = (Σn)/Sn. Has canonical
desingularization



Vortices on S2

n-vortex ↔ n unordered marked points on S2 (repeats
allowed)

Roots of
P(z) = a0 + a1z + · · ·+ anz

n

Clearly P(z) ∼ λP(z)

n-vortex ↔ [a0, a1, . . . , an] ∈ CPn

Mn = CPn as a complex mfd (if Vol(Σ) > 4πn/τ)

Shrinks to a point as τ ↘ 4πn/Vol(Σ)



The L2 metric on Mn

Any curve (ϕ(t),A(t)) of solns of vortex eqns represents a
tangent vector v to Mn at [ϕ(0),A(0)]

Length of v? Project (ϕ̇(0), Ȧ(0)) ∈ Γ(L)⊕ Ω1(Σ)
L2 orthogonal to gauge orbit through (ϕ(0),A(0)). Then

‖v‖2 := ‖(ϕ̇(0), Ȧ(0))⊥‖2
L2

Equips Mn with a Riemannian metric γ

Fairly obvious that γ is hermitian w.r.t.

J : (ϕ̇, Ȧ) 7→ (iϕ̇, ∗Ȧ)

Not so obvious that J coincides with J on Σn/Sn

Even less obvious that γ is kähler

Follows from Strachan-Samols localization formula for γ on
Mn\∆n (∆n = coincidence set). . .

. . . or from high-powered general nonsense [Garcia Prada]



Manton’s volume calculation

H2(Mn(S2)) = H2(CPn) = R so [ωL2 ] = α[ωFS ]

Vol(Mn) =

∫
Mn

ωn
L2

n!
= αnVol(CPn)FS

Just need constant α

Consider S2 = X ⊂ Mn, submfd of coincident vortices. Can
compute Area(X ) =

∫
X ωL2 using localization formula

Corresponding sphere in CPn:

P(z) = (z − t)n = zn − ntzn−1 + · · ·+ (−t)n

X = {[1,−nt, . . . , (−t)n] : t ∈ C ∪ {∞} }.

Compute
∫
X ωFS , deduce α

Vol(Mn) =
πn(τVol(Σ)− 4πn)n

n!

Vanishes in dissolving limit τ ↘ 4πn/Vol(Σ)



Manton’s volume calculation

Moral: only need kähler class of Mn. Idea can be extended to
other Σ (S2 not round, higher genus) [Manton-Nasir]

Why should we care about Vol(Mn)? Behaviour as n→∞,
with n/Vol(Σ) fixed, tells us about thermodynamics of a gas
of vortices.

Dissolving limit studied in detail for Σ = S2 round
[Baptista-Manton] and Σ higher genus [Manton-Romão],
interesting conjectured asymptotics for γ(τ)



Not so plain vortices: (X , G ) = (S2, U(1))

Fix e ∈ S2 (e.g. e = (0, 0, 1))
G acts on S2 by rotations about e

Moment map µ(n) = −e · n
P → Σ principal G bundle, degree n ≥ 0, connexion A

n section of P ×G S2

Canonical sections n∞(x) = e, n0(x) = −e

Two integer topological invariants of a section n:

n+ = #(n(Σ),n∞(Σ)), n− = #(n(Σ),n0(Σ))

Constraint: n = n+ − n− (so we’re assuming n+ ≥ n−)

Energy

E =
1

2

∫
Σ

(
|dAn|2 + |FA|2 + (e · n)2

)
where, in a local trivialization

dAn = dn− Ae× n



“Bogomol’nyi” bound

Given (n,A) define a two-form on Σ

Ω(X ,Y ) = (n× dAn(X )) · dAn(Y )

Let e1, e2 = Je1 be a local orthonormal frame on Σ. Then

E =
1

2
(|dAn(e1)|2 + |dAn(e2)|2) +

1

2
|FA|2 +

1

2
(e · n)2

=
1

2
|dAn(e1) + n× dAn(e2)|2 +

1

2
|FA − ∗e · n|2

+ ∗ (Ω + e · nFA)

=⇒ E ≥
∫

Σ
(Ω + e · nFA)

Claim: last integral is a homotopy invariant of (n,A)



“Bogomol’nyi” bound

Suffices to show this in case D = n−1({e,−e}) ⊂ Σ finite

On Σ\D have global one-form

ξ = e · n(A− n∗dϕ)

Furthermore, Ω + e · nFA = dξ

Hence ∫
Σ

(Ω + e · nFA) =

∫
Σ\D

(Ω + e · nFA)

= lim
ε→0

∑
p∈D

−
∮

Cε(p)
ξ

= 2π(n+ + n−)



“Bogomol’nyi” bound

Hence E ≥ 2π(n+ + n−) with equality iff

∂An(e1) = dAn(e1) + n× dAn(Je1) = 0 (V 1)

∗FA = e · n (V 2)

Note solutions of (V 1) certainly have D finite (and n± ≥ 0)



Existence: Sibner-Sibner-Yang

Again, there’s a “Bradlow” obstruction

2π(n+ − n−) < Vol(Σ)

but derivation is nontrivial

Theorem: Let n+ ≥ n− ≥ 0 and 2π(n+ − n−) < Vol(Σ). For
each pair of disjoint effective divisors D+,D− in Σ of degrees
n+, n− there exists a unique gauge equivalence class of
solutions of (V1), (V2).

Moduli space of vortices:
Mn+,n− ≡ (Σn+/Sn+)× (Σn−/Sn−)\∆n+,n−

If n− > 0, Mn+,n− is noncompact (in an interesting way)

Again, have kähler L2 metric. Complete? Finite volume?
Isometric compactification?



A formal compactification

A “linear” model: G = T 2, X = C2, moment map

µ : C2 → g∗, µ(z+, z−) =
1

2
(|z+|2 + |z−|2 − 1, |z+|2 −

1

2
)

Principal G bundle P → Σ of degree (n1, n2)

Associated X -bundle P ×G C2 ≡ L+ ⊕ L− where
deg L+ = n+ = n1 + n2, deg L− = n− = n2

Give g a deformed inner product q−2dt2
1 + dt2

2

[i.e. think of G as S1
1/q × S1]

Vortex equations

∂Aϕ+ = 0 ∂Aϕ− = 0

∗F1 =
1

2
q2(1− |ϕ+|2 + |ϕ1|2) ∗F2 =

1

2
(

1

2
− |ϕ+|2)



A formal compactification

Baptista: vortex solutions ↔ effective divisors
(ϕ−1

+ (0), ϕ−1
− (0)) of degrees n+, n− (if q, Vol(Σ), n1, n2

satisfy “Bradlow” bounds)

Mq
n+,n− is compact

Obvious dense open embedding ι : Mn+,n− ↪→ Mq
n+,n−

[where Mn+,n− is moduli space of S2 vortices]

Have L2 metrics γ and γq on Mn+,n− , Mq
n+,n−

Conjecture (Romão, JMS): ι∗γq → γ uniformly as q →∞ in
the case n+ = n−.

Similar conjecture for case n+ 6= n−: start with a different
linear model

Motivation?



A formal compactification

Define, in a local triv,

T : ((A1,A2), (ϕ+, ϕ−)) 7→ (A2, [ϕ+ : ϕ−])

Globalizes: T : A (P)× Γ(L+ ⊕ L−)→ A (P ′)× Γ(F ′)

Formally, T is an L2 Riemannian submersion

Fix a disjoint pair of divisors and let ((A1,A2), (ϕ+, ϕ−))q be
the corresponding q-vortex, q > 0 large

Then T ((A1,A2), (ϕ+, ϕ−))q satisfes the first F ′ vortex
equation by construction:

∂A2 [ϕ+ : ϕ−] = 0
For all q,

∗F1 =
1

2
q2(1− |ϕ+|2 − |ϕ−|2)

Suggests |ϕ+|2 + |ϕ−|2 = 1 + O(q−2)



A formal compactification

Then last q-vortex equation is

∗F2 =
1

2
(

1

2
− |ϕ+|2) =

1

2

|ϕ−|2 − |ϕ+|2

|ϕ−|2 + |ϕ+|2
+ O(q−2)

=
1

2
e · n + O(q−2)

suggesting T ((A1,A2), (ϕ+, ϕ−))q converges to a F ′ vortex as
q →∞
Similar statement for (G ,X ) = (S1,C2),
ι : Holk(Σ,CP1) ↪→ Mq

k , proved by Chih-Chung Liu



Testing the conjecture

Since Mq
n+,n− is compact, we can compute its volume if we

know the kähler class. We do for Σ = S2 [Baptista]. Take
limit q →∞, get conjectural formula for Vol(Mn+,n+),

Vol(Mn,n(S2)) =
(2π)2n

(n!)2
Vol(S2)2n

for any S2

Can prove this for n = 1, on any round S2

Theorem (Romão, JMS) Let Σ be a round two-sphere. Then

Vol(M1,1(Σ)) = (2πVol(Σ))2.

Proof has 3 ingredients:
Symmetry
Taubes equation
Localization formula



Ingredient 1: symmetry

M1,1 = S2 × S2\∆ = (0, 1)× SO(3) t {1} × S2

γ is SO(3)-invariant, kähler, and invariant under
(z+, z−) 7→ (z−, z+)
Every such metric takes the form

γ = −Q ′(ε)

ε
(dε2 + ε2σ2

3) + Q(ε)

(
1− ε2

1 + ε2
σ2

1 +
1 + ε2

1− ε2
σ2

2

)
,

for Q : (0, 1]→ R decreasing with Q(1) = 0.
Has finite total volume iff Q is bounded

Vol(M1,1) =
1

4
(4π)2 lim

ε→0
Q(ε)2



Ingredient 2: Taubes equation

∂An = 0, ∗FA =
1

2
e · n

Stereographic coords z , u on S2
R , S2

target

g = Ω(|z |)dzdz =
4R2

(1 + |z |2)2
dzdz .

h : Σ→ R ∪ {±∞}, h = log |u|2

∇2h − 2Ω tanh
h

2
= 4π(

∑
δ(z − z+)−

∑
δ(z − z−))

Suffices to consider z+ = ε > 0, z− = −ε. Can regularize

h(z) = log

(
|z − ε|2

|z + ε|2

)
+ ĥ(z/ε)



Ingredient 2: Taubes equation

Then

∇2ĥ − 8R2ε2

(1 + ε2|z |2)2

|z − 1|2ebh − |z + 1|2

|z − 1|2ebh + |z + 1|2
= 0

Nice semilinear elliptic PDE



Ingredient 3: localization formula

The solution h of Taubes equation with sources at
z1, z2, . . . , zn+ , zn++1, . . . , zn++n− has expansion

±h = log |z − zs |2 + as +
1

2
b̄s(z − zs) +

1

2
bs(z̄ − z̄s) + · · ·

about ± vortex position zs

Think of (zs) as local coords on Mn+,n−(Σ)\∆
br (z1, . . . , zn++n−) are (unknown) complex functions of vortex
positions

Proposition (Romão-JMS, following Strachan-Samols):

γ = 2π

{∑
r

Ω(|zr |)|dzr |2 +
∑
r ,s

∂bs

∂zr
dzrdz̄s

}

Holds on any Riemann surface (including C)

Expect such a formula whenever target X is toric w.r.t. GC



Proof of volume formula for M1,1(S2)

Localization formula =⇒

Q(ε) = −2π

(
εb1(ε,−ε)− 4R2

1 + ε2
+ 1 + 2R2

)
So symmetry =⇒ volume formula holds if

lim
ε→0

εb1(ε,−ε) = −1

But

εb1(ε,−ε) =
∂ĥ(x + iy)

∂x

∣∣∣∣
(1,0)

− 1

so it remains to show ĥx(1 + i0)→ 0 as ε→ 0.

Go do elliptic estimates on the PDE for ĥ



What else?

Case Σ = C is interesting (more interesting from “physics”
viewpoint)

M1,1(C) = C× C\∆ = Ccom × C×

Numerics: metric on SoR C×, γ0 = F (ε)(dε2 + ε2dψ2)

Conjectured asymptotics in small, large ε regions

F (ε) ∼ −8π log ε as ε→ 0

F (ε) ∼ 2π

(
2 +

m2

π2
K0(2ε)

)
as ε→∞

Would imply M1,1(C) is incomplete with unbounded scalar
curvature

Model with µ(n) = τ − e · n completely unexplored


