Geometry of vortex moduli spaces

Martin Speight joint with Nuno Romão

YDGD York 4/11/15

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

What are vortices?

- Kähler mfd X, hamiltonian G action, $\mu: X \to \mathfrak{g}$
- Riemann surface Σ , principal G bundle $P \rightarrow \Sigma$
- A vortex is a pair (A, φ), connexion on P, section of P×_G X, s.t.

$$\overline{\partial_A} arphi \ = \ 0 \ * \mathcal{F}_A \ = \ -\mu(arphi)$$

• Amazing fact: a vortex (if it exists) minimizes

$$E(A,\varphi) = \frac{1}{2} \left(\|F_A\|_{L^2}^2 + \|d_A\varphi\|_{L^2}^2 + \|\mu(\varphi)\|_{L^2}^2 \right)$$

in its "homology class" [Cieliebak-Gaio-Salamon, Mundet i Riera].

- Moduli space of vortices is an object of some interest:
 - Equivariant Gromov-Witten theory
 - "Physics" (actually, physics)
 - Has a natural kähler geometry
- We'll stick to $(X, G) = (\mathbb{C}, U(1)), (S^2, U(1)), (\mathbb{C}^2, T^2).$

Plain vanilla vortices: $X = \mathbb{C}$, G = U(1)

- μ(z) = ¹/₂(|z|² − τ) (can always shift μ by τ ∈ centre of g)
 (Σ, ω) compact
- $P \rightarrow \Sigma$ of degree $n \ge 0$.
- φ a section of $L = P \times_{U(1)} \mathbb{C}$.

$$E = \frac{1}{2} \int_{\Sigma} |d_A \varphi|^2 + |F_A|^2 + \frac{1}{4} (\tau - |\varphi|^2)^2$$

- Nice identity $\langle F_A, |\varphi|^2 \omega \rangle = |\partial_A \varphi|^2 |\overline{\partial_A} \varphi|^2$
- "Bogomol'nyi" argument:

$$E = \frac{1}{2} \|F_A - \frac{1}{2} (\tau - |\varphi|^2) \omega\|_{L^2}^2 + \|\overline{\partial_A}\varphi\|_{L^2}^2 + \frac{\tau}{2} \langle F_A, \omega \rangle_{L^2}$$

$$\geq \tau \pi n$$

with equality iff

$$\begin{array}{rcl} \overline{\partial}_{A}\varphi & = & 0 \\ *F_{A} & = & \frac{1}{2}(\tau - |\varphi|^{2}). \end{array}$$

Bradlow's obstruction

Integrate 2nd vortex equation over Σ:

$$\begin{split} \int_{\Sigma} F_{\mathcal{A}} &= \frac{1}{2} \int_{\Sigma} (\tau - |\varphi|^2) \omega \\ 2\pi n &= \frac{1}{2} \tau \mathsf{Vol}(\Sigma) - \frac{1}{2} ||\varphi|_{L^2}^2 \leq \frac{1}{2} \tau \mathsf{Vol}(\Sigma) \end{split}$$

- Hence, if $Vol(\Sigma) < 4\pi n/\tau$, no solutions exist
- "Dissolved" limit: Vol(Σ) = 4πn/τ. Vortices have φ = 0. Moduli space of vortices = space of constant curvature connexions on L
- Interesting case: $Vol(\Sigma) > 4\pi n/\tau$

Existence – Bradlow's approach

- Choose and fix holomorphic structure on L and background hermitian fibre metric h₀
- Any other hermitian metric is $h = e^{2u}h_0$ for some $u \in C^{\infty}(\Sigma)$
- For each *h* there exists unique metric connexion *A* s.t. $\overline{\partial_A} = \overline{\partial}_L$
- Choose and fix φ a holomorphic section of L. $\overline{\partial_A} \varphi = 0$ by defn of A
- 2nd vortex equation:

$$\Delta u + \frac{1}{2}h_0(\varphi,\varphi)e^{2u} + (*F_0 - \frac{\tau}{2}) = 0$$

There exists a unique solution u of this PDE by results of Kazdan-Warner

- Gauge equivalence class of solution uniquely determined by divisor of φ, i.e. φ⁻¹(0) unordered list of n points in Σ with repeats allowed
- Moduli space of *n*-vortices $M_n = (\Sigma^n)/S_n$. Has canonical desingularization

Vortices on S^2

- *n*-vortex \leftrightarrow *n* unordered marked points on S^2 (repeats allowed)
- Roots of

$$P(z) = a_0 + a_1 z + \cdots + a_n z^n$$

- Clearly $P(z) \sim \lambda P(z)$
- *n*-vortex $\leftrightarrow [a_0, a_1, \dots, a_n] \in \mathbb{C}P^n$
- $M_n = \mathbb{C}P^n$ as a complex mfd (if Vol(Σ) > $4\pi n/\tau$)
- Shrinks to a point as $\tau \searrow 4\pi n/\text{Vol}(\Sigma)$

The L^2 metric on M_n

- Any curve (φ(t), A(t)) of solns of vortex eqns represents a tangent vector v to M_n at [φ(0), A(0)]
- Length of v? Project $(\dot{\varphi}(0), \dot{A}(0)) \in \Gamma(L) \oplus \Omega^1(\Sigma)$ L^2 orthogonal to gauge orbit through $(\varphi(0), A(0))$. Then

 $\|v\|^2 := \|(\dot{\varphi}(0), \dot{A}(0))_{\perp}\|_{L^2}^2$

- Equips M_n with a Riemannian metric γ
- Fairly obvious that γ is hermitian w.r.t.

 $J:(\dot{arphi},\dot{A})\mapsto(i\dot{arphi},*\dot{A})$

Not so obvious that J coincides with J on $\sum^n S_n$

- Even less obvious that γ is kähler
- Follows from Strachan-Samols **localization formula** for γ on $M_n \setminus \Delta_n$ ($\Delta_n =$ coincidence set)...
- ... or from high-powered general nonsense [Garcia Prada]

Manton's volume calculation

•
$$H^2(M_n(S^2)) = H^2(\mathbb{C}P^n) = \mathbb{R}$$
 so $[\omega_{L^2}] = \alpha[\omega_{FS}]$
 $Vol(M_n) = \int_{M_n} \frac{\omega_{L^2}^n}{n!} = \alpha^n Vol(\mathbb{C}P^n)_{FS}$

- Just need constant α
- Consider S² = X ⊂ M_n, submfd of coincident vortices. Can compute Area(X) = ∫_X ω_{L²} using localization formula

• Corresponding sphere in $\mathbb{C}P^n$:

$$P(z) = (z-t)^n = z^n - ntz^{n-1} + \dots + (-t)^n$$

$$X = \{[1, -nt, \dots, (-t)^n] : t \in \mathbb{C} \cup \{\infty\} \}.$$

• Compute $\int_X \omega_{FS}$, deduce α

$$\operatorname{Vol}(M_n) = \frac{\pi^n (\tau \operatorname{Vol}(\Sigma) - 4\pi n)^n}{n!}$$

Vanishes in dissolving limit $\tau \searrow 4\pi n/\text{Vol}(\Sigma)$

- Moral: only need kähler class of M_n. Idea can be extended to other Σ (S² not round, higher genus) [Manton-Nasir]
- Why should we care about Vol(M_n)? Behaviour as n → ∞, with n/Vol(Σ) fixed, tells us about thermodynamics of a gas of vortices.

• Dissolving limit studied in detail for $\Sigma = S^2$ round [Baptista-Manton] and Σ higher genus [Manton-Romão], interesting conjectured asymptotics for $\gamma(\tau)$

Not so plain vortices: $(X, G) = (S^2, U(1))$

- Fix $\mathbf{e} \in S^2$ (e.g. $\mathbf{e} = (0, 0, 1)$) G acts on S^2 by rotations about \mathbf{e}
- Moment map $\mu(\mathbf{n}) = -\mathbf{e} \cdot \mathbf{n}$
- $P \rightarrow \Sigma$ principal G bundle, degree $n \ge 0$, connexion A
- **n** section of $P \times_G S^2$
- Canonical sections $\mathbf{n}_{\infty}(x) = \mathbf{e}, \ \mathbf{n}_{0}(x) = -\mathbf{e}$
- **Two** integer topological invariants of a section **n**:

 $n_+ = \#(\mathbf{n}(\Sigma), \mathbf{n}_\infty(\Sigma)), \qquad n_- = \#(\mathbf{n}(\Sigma), \mathbf{n}_0(\Sigma))$

Constraint: $n = n_+ - n_-$ (so we're assuming $n_+ \ge n_-$)

Energy

$$E = \frac{1}{2} \int_{\Sigma} \left(|d_A \mathbf{n}|^2 + |F_A|^2 + (\mathbf{e} \cdot \mathbf{n})^2 \right)$$

where, in a local trivialization

$$d_A \mathbf{n} = d\mathbf{n} - A\mathbf{e} \times \mathbf{n}$$

"Bogomol'nyi" bound

• Given (\mathbf{n}, A) define a two-form on Σ

 $\Omega(X,Y) = (\mathbf{n} \times d_A \mathbf{n}(X)) \cdot d_A \mathbf{n}(Y)$

• Let $e_1, e_2 = Je_1$ be a local orthonormal frame on Σ . Then

$$\mathcal{E} = \frac{1}{2} (|d_A \mathbf{n}(e_1)|^2 + |d_A \mathbf{n}(e_2)|^2) + \frac{1}{2} |F_A|^2 + \frac{1}{2} (\mathbf{e} \cdot \mathbf{n})^2$$

$$= \frac{1}{2} |d_A \mathbf{n}(e_1) + \mathbf{n} \times d_A \mathbf{n}(e_2)|^2 + \frac{1}{2} |F_A - *\mathbf{e} \cdot \mathbf{n}|^2$$

$$+ * (\Omega + \mathbf{e} \cdot \mathbf{n}F_A)$$

$$\Rightarrow \quad E \geq \int_{\Sigma} (\Omega + \mathbf{e} \cdot \mathbf{n}F_A)$$

• Claim: last integral is a homotopy invariant of (n, A)

"Bogomol'nyi" bound

- Suffices to show this in case $D = \mathbf{n}^{-1}(\{\mathbf{e}, -\mathbf{e}\}) \subset \Sigma$ finite
- On $\Sigma \setminus D$ have global one-form

$$\xi = \mathbf{e} \cdot \mathbf{n} (A - \mathbf{n}^* d\varphi)$$

Furthermore, $\Omega + \mathbf{e} \cdot \mathbf{n} F_A = d\xi$

Hence

$$\int_{\Sigma} (\Omega + \mathbf{e} \cdot \mathbf{n} F_A) = \int_{\Sigma \setminus D} (\Omega + \mathbf{e} \cdot \mathbf{n} F_A)$$
$$= \lim_{\varepsilon \to 0} \sum_{p \in D} - \oint_{C_{\varepsilon}(p)} \xi$$
$$= 2\pi (n_+ + n_-)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Hence $E \ge 2\pi(n_+ + n_-)$ with equality iff $\overline{\partial_A}\mathbf{n}(e_1) = d_A\mathbf{n}(e_1) + \mathbf{n} \times d_A\mathbf{n}(Je_1) = 0 \quad (V1)$ $*F_A = \mathbf{e} \cdot \mathbf{n} \quad (V2)$
- Note solutions of (V1) certainly have D finite (and $n_{\pm} \ge 0$)

• Again, there's a "Bradlow" obstruction

 $2\pi(n_+ - n_-) < \operatorname{Vol}(\Sigma)$

but derivation is nontrivial

- Theorem: Let n₊ ≥ n₋ ≥ 0 and 2π(n₊ n₋) < Vol(Σ). For each pair of disjoint effective divisors D₊, D₋ in Σ of degrees n₊, n₋ there exists a unique gauge equivalence class of solutions of (V1), (V2).
- Moduli space of vortices: $M_{n_+,n_-} \equiv (\Sigma^{n_+}/S_{n_+}) \times (\Sigma^{n_-}/S_{n_-}) \backslash \Delta_{n_+,n_-}$
- If $n_{-} > 0$, $M_{n_{+},n_{-}}$ is noncompact (in an interesting way)
- Again, have k\u00e4hler L² metric. Complete? Finite volume? Isometric compactification?

• A "linear" model: $G = T^2$, $X = \mathbb{C}^2$, moment map

$$\mu: \mathbb{C}^2 \to \mathfrak{g}^*, \qquad \mu(z_+, z_-) = \frac{1}{2}(|z_+|^2 + |z_-|^2 - 1, |z_+|^2 - \frac{1}{2})$$

- Principal G bundle $P \rightarrow \Sigma$ of degree (n_1, n_2)
- Associated X-bundle $P \times_G \mathbb{C}^2 \equiv L_+ \oplus L_-$ where deg $L_+ = n_+ = n_1 + n_2$, deg $L_- = n_- = n_2$
- Give g a deformed inner product $q^{-2}dt_1^2 + dt_2^2$ [i.e. think of G as $S_{1/q}^1 \times S^1$]
- Vortex equations

$$\overline{\partial}_A \varphi_+ = 0 \qquad \overline{\partial}_A \varphi_- = 0$$
$$*F_1 = \frac{1}{2}q^2(1 - |\varphi_+|^2 + |\varphi_1|^2) \qquad *F_2 = \frac{1}{2}(\frac{1}{2} - |\varphi_+|^2)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

- Baptista: vortex solutions \leftrightarrow effective divisors $(\varphi_+^{-1}(0), \varphi_-^{-1}(0))$ of degrees n_+, n_- (if q, Vol (Σ) , n_1 , n_2 satisfy "Bradlow" bounds)
- M_{n_+,n_-}^q is compact
- Obvious dense open embedding $\iota: M_{n_+,n_-} \hookrightarrow M^q_{n_+,n_-}$ [where M_{n_+,n_-} is moduli space of S^2 vortices]
- Have L^2 metrics γ and γ^q on M_{n_+,n_-} , $M^q_{n_+,n_-}$
- **Conjecture** (Romão, JMS): $\iota^* \gamma^q \to \gamma$ uniformly as $q \to \infty$ in the case $n_+ = n_-$.

- Similar conjecture for case n₊ ≠ n_−: start with a different linear model
- Motivation?

• Define, in a local triv,

 $T:((A_1,A_2),(\varphi_+,\varphi_-))\mapsto (A_2,[\varphi_+:\varphi_-])$

Globalizes: $T : \mathscr{A}(P) \times \Gamma(L_+ \oplus L_-) \to \mathscr{A}(P') \times \Gamma(F')$

- Formally, T is an L^2 Riemannian submersion
- Fix a disjoint pair of divisors and let ((A₁, A₂), (φ₊, φ₋))_q be the corresponding q-vortex, q > 0 large
- Then T((A₁, A₂), (φ₊, φ₋))_q satisfes the first F' vortex equation by construction:

$$\overline{\partial}_{A_2}[\varphi_+:\varphi_-]=0$$

• For all *q*,

$$*F_1 = rac{1}{2}q^2(1 - |arphi_+|^2 - |arphi_-|^2)$$

Suggests $|\varphi_+|^2 + |\varphi_-|^2 = 1 + O(q^{-2})$

• Then last *q*-vortex equation is

$$*F_2 = \frac{1}{2}(\frac{1}{2} - |\varphi_+|^2) = \frac{1}{2}\frac{|\varphi_-|^2 - |\varphi_+|^2}{|\varphi_-|^2 + |\varphi_+|^2} + O(q^{-2})$$
$$= \frac{1}{2}\mathbf{e} \cdot \mathbf{n} + O(q^{-2})$$

suggesting $T((A_1, A_2), (\varphi_+, \varphi_-))_q$ converges to a F' vortex as $q \to \infty$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Similar statement for $(G, X) = (S^1, \mathbb{C}^2)$, $\iota : Hol_k(\Sigma, \mathbb{C}P^1) \hookrightarrow M_k^q$, proved by Chih-Chung Liu

Testing the conjecture

Since M^q_{n+,n−} is compact, we can compute its volume if we know the kähler class. We do for Σ = S² [Baptista]. Take limit q → ∞, get conjectural formula for Vol(M_{n+,n+}),

$$\operatorname{Vol}(M_{n,n}(S^2)) = rac{(2\pi)^{2n}}{(n!)^2} \operatorname{Vol}(S^2)^{2n}$$

for any S^2

- Can prove this for n = 1, on any round S^2
- Theorem (Romão, JMS) Let Σ be a round two-sphere. Then

 $\operatorname{Vol}(M_{1,1}(\Sigma)) = (2\pi \operatorname{Vol}(\Sigma))^2.$

- Proof has 3 ingredients:
 - Symmetry
 - Taubes equation
 - Localization formula

Ingredient 1: symmetry

- $M_{1,1} = S^2 \times S^2 \setminus \Delta = (0,1) \times SO(3) \sqcup \{1\} \times S^2$ • γ is SO(3)-invariant, kähler, and invariant under $(z_+, z_-) \mapsto (z_-, z_+)$
- Every such metric takes the form

$$\gamma = -\frac{Q'(\varepsilon)}{\varepsilon} (d\varepsilon^2 + \varepsilon^2 \sigma_3^2) + Q(\varepsilon) \left(\frac{1 - \varepsilon^2}{1 + \varepsilon^2} \sigma_1^2 + \frac{1 + \varepsilon^2}{1 - \varepsilon^2} \sigma_2^2 \right),$$

for $Q: (0,1] \rightarrow \mathbb{R}$ decreasing with Q(1) = 0.

• Has finite total volume iff Q is bounded

$$Vol(M_{1,1}) = \frac{1}{4} (4\pi)^2 \lim_{\varepsilon \to 0} Q(\varepsilon)^2$$

Ingredient 2: Taubes equation

$$\overline{\partial}_A \mathbf{n} = 0, \qquad *F_A = \frac{1}{2} \mathbf{e} \cdot \mathbf{n}$$

• Stereographic coords z, u on S_R^2 , S_{target}^2

$$g = \Omega(|z|) dz d\overline{z} = rac{4R^2}{(1+|z|^2)^2} dz d\overline{z}.$$

•
$$h: \Sigma \to \mathbb{R} \cup \{\pm \infty\}, \ h = \log |u|^2$$

 $\nabla^2 h - 2\Omega \tanh \frac{h}{2} = 4\pi (\sum \delta(z - z_+) - \sum \delta(z - z_-))$

• Suffices to consider $z_+ = \varepsilon > 0$, $z_- = -\varepsilon$. Can regularize

$$h(z) = \log\left(rac{|z-arepsilon|^2}{|z+arepsilon|^2}
ight) + \widehat{h}(z/arepsilon)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

$$\nabla^2 \widehat{h} - \frac{8R^2 \varepsilon^2}{(1+\varepsilon^2 |z|^2)^2} \frac{|z-1|^2 e^{\widehat{h}} - |z+1|^2}{|z-1|^2 e^{\widehat{h}} + |z+1|^2} = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Nice semilinear elliptic PDE

Ingredient 3: localization formula

• The solution *h* of Taubes equation with sources at $z_1, z_2, \ldots, z_{n_+}, z_{n_++1}, \ldots, z_{n_++n_-}$ has expansion

$$\pm h = \log |z - z_s|^2 + a_s + \frac{1}{2}\bar{b}_s(z - z_s) + \frac{1}{2}b_s(\bar{z} - \bar{z}_s) + \cdots$$

about \pm vortex position z_s

- Think of (z_s) as local coords on $M_{n_+,n_-}(\Sigma) \setminus \Delta$
- b_r(z₁,..., z_{n++n}) are (unknown) complex functions of vortex positions
- Proposition (Romão-JMS, following Strachan-Samols):

$$\gamma = 2\pi \left\{ \sum_{r} \Omega(|z_r|) |dz_r|^2 + \sum_{r,s} \frac{\partial b_s}{\partial z_r} dz_r d\bar{z}_s \right\}$$

Holds on any Riemann surface (including \mathbb{C})

• Expect such a formula whenever target X is toric w.r.t. $G^{\mathbb{C}}$

Proof of volume formula for $M_{1,1}(S^2)$

• Localization formula \Longrightarrow

$$Q(\varepsilon) = -2\pi \left(\varepsilon b_1(\varepsilon, -\varepsilon) - rac{4R^2}{1+\varepsilon^2} + 1 + 2R^2
ight)$$

So symmetry \implies volume formula holds if

$$\lim_{\varepsilon\to 0}\varepsilon b_1(\varepsilon,-\varepsilon)=-1$$

But

$$\varepsilon b_1(\varepsilon, -\varepsilon) = \frac{\partial \widehat{h}(x+iy)}{\partial x}\Big|_{(1,0)} - 1$$

so it remains to show $\widehat{h}_{\times}(1+i0) \to 0$ as $\varepsilon \to 0$. • Go do elliptic estimates on the PDE for \widehat{h}

What else?

- Case Σ = C is interesting (more interesting from "physics" viewpoint)
- $M_{1,1}(\mathbb{C}) = \mathbb{C} \times \mathbb{C} \setminus \Delta = \mathbb{C}_{com} \times \mathbb{C}^{\times}$
- Numerics: metric on SoR \mathbb{C}^{\times} , $\gamma^{0} = F(\varepsilon)(d\varepsilon^{2} + \varepsilon^{2}d\psi^{2})$

• Conjectured asymptotics in small, large ε regions

$$egin{array}{rcl} {\mathcal F}(arepsilon) &\sim & -8\pi\logarepsilon & & {
m as} \ arepsilon o 0 \ {\mathcal F}(arepsilon) &\sim & 2\pi\left(2+rac{m^2}{\pi^2}{\mathcal K}_0(2arepsilon)
ight) & & {
m as} \ arepsilon o \infty \end{array}$$

- Would imply M_{1,1}(C) is incomplete with unbounded scalar curvature
- Model with $\mu(\mathbf{n}) = \tau \mathbf{e} \cdot \mathbf{n}$ completely unexplored