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e p(c0) =(0,0,1)
@ Framed cobordism class of any regular preimage
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o Notation: YX = space of cts maps (X, xp) — (Y, y0)
o Algebraically inessential family, (S2)M c (S2)M:

o [p*us2] =0

o classes labelled by H3(M;Z) = Z

o everything if H*(M;Z) =0 (e.g. M = S* =R3U {o0})
o integral formula: ¢*(w/4m) = db,

Q:/H/\dHEZ
M

Hopf degree

o Essential maps: ¢~ !(reg pt) wraps around a nontrivial 1-cycle
in M. Not localized. Topological geons?



“Knot" solitons

Picture credit: Battye and Sutcliffe



Are knot solitons really solito -7

Spatially localized, but string-like core

E ~ Q% (not ~ Q, like skyrmions)

Can they be quantized as fermions (like skyrmions)?
Question about the topology of (52)M
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Hopfions from Skyrmions: the Hopf fibration

7:C?>> S35 S2=CPt, (z1,22) = [271 @ 2]

o Given a Skyrme field U : M — SU(2) = S3, produce a FH
field o U : M — S2

e Our idea: study the map 7, : (SU(2))M — (S?)M

o Why?

° (5U(2))53 well studied, e.g. m1(%2) = Z,, generated by
exchange. Consistency of FR quantization established (Giulini)
o GM is a topological group:

U(x), U(x) — U(x)U(x)

e Basic fact: 7, : (SU(2))M — (5%)M surjects, and B+ Q
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o m: 53— S?is a fibration: homotopy lifting property
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holds for all domains X

o Prop (JMS, Krusch): 7, : (S3)M — (5%)M is a Serre
fibration (has homotopy lifting property w.r.t. all disks)

@ Any Serre fibration F < E & B induces a homotopy long
exact sequence:

Lx Px

o m(F) 55 mi(E) %5 mi(B) 5 me—a(F) %5 -+ 75 mo(B)

e Our case: p=m,, E=SU2)M, B=(S>)", F=u@m)M
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Hopfions from Skyrmions: the Hopf fibration

S0 i (SURMY 23 ((SD)M) B HY (M Z) 50— -

@ 1. = 0 since U(1) contracts in SU(2)
o Auckly-Kapitanski:
mo(GM) = H3(M; 73(G)) x HY(M; H1(G))
o Auckly-JMS: 71 (GM) = 75 x H*(M; m3(G))
e Corollary (Krusch, JMS): 7, induces a short exact sequence

0 — m(SURM) =5 m ((SHM) - HY(M;Z) — 0

e In particular 7, is an isomorphism if HY(M;Z) =0 (e.g.
m1(M) is finite)
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M = S3 = 11((S*)M) = 1 (SUR)M) = Z;
Generated by .. (two skyrmion exchange loop) = two hopfion
exchange loop

e Recall W: %o — C
Deck transformation 1 : %7@ — CgQ

(]

Mp)=p st.  p~p, p#p

Demand M*V¥ = -V, i.e.

Gives odd exchange statistics



Finkelstein-Rubinstein symmetry constraints

o Consider quantum ground state V : CgQ —C
What are its spin L2, L3 and isospin K3 quantum numbers?

@ Assume classical energy minimizer ¢ invariant under
simultaneous spatial rotation by « about x3 axis and
isorotation by 5 about @3 axis. Then

Yop 1 [0,1] = Cq,  [ap(t)l(x) = R(Bt)p(R(at)x)

is a closed loop in €.

@ Quantum ground state also eigenstate of spin 22, I3 and
isospin K3

e Two points p,(p) € %Q rrespond to p € Cq. If vap
noncontractible, W(I(p)) = —V(p), so

(e~iobs g=iBRay) (p) = —w(p)

So either W(p) = 0 (bizarre) or e~ /(als+Ks) — 1



Finkelstein-Rubinstein symmetry constraints

o Classical symmetries predict (iso)spin quantum numbers

@ Assume L, L3, K3 take lowest values allowed by constraints

Q| | Eq shape | symmetry | ground state
1 135.2 | unknot | (1,1) 2 =5, %)

2 220.6 | unknot | (2,1) |0,0,0)

3 [ 308.9 | unknot | C} 5. 5)

4 385.5 | unknot | (2,2) |0,0,0)

5 |459.8 | link — 7, £, 3)

6 521.0 | link — |0,0,0)

7 589.0 | knot — %,:l:%,%>
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Concluding remarks

@ Can get quantitative energy spectrum within collective
coordinate approx:
restrict dynamics to symmetry orbit of classical minimizer

e Warning: orbit does not have the same 7; as ¢!
27 spatial rotation loop always has order 2 in 71 (orbit)
(independent of Q!)
Have to impose FR constraints “by hand”

@ Genuinely localized hopfions can be consistently fermionically
quantized
= particle-like in this respect, at least

@ Key to understanding this is algebraic topology of the Hopf
fibration
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