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Pontrjagin (1941): homotopy classes of maps ϕ : M3 → S2

fall into families labelled by

α = [ϕ∗µS2 ] ∈ H2(M;Z)

Within the α family, classes are labelled by elements of

H3(M;Z)/2α ^ H1(M;Z)
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“Knot” solitons

Notation: Y X = space of cts maps (X , x0)→ (Y , y0)

Algebraically inessential family, (S2)M∗ ⊂ (S2)M :

[ϕ∗µS2 ] = 0
classes labelled by H3(M;Z) = Z
everything if H2(M;Z) = 0 (e.g. M = S3 = R3 ∪ {∞})
integral formula: ϕ∗(ω/4π) = dθ,

Q =

∫
M

θ ∧ dθ ∈ Z

Hopf degree

Essential maps: ϕ−1(reg pt) wraps around a nontrivial 1-cycle
in M. Not localized. Topological geons?
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“Knot” solitons

Picture credit: Battye and Sutcliffe



Are knot solitons really solitons?

Spatially localized, but string-like core

E ∼ Q
3
4 (not ∼ Q, like skyrmions)

Can they be quantized as fermions (like skyrmions)?

Question about the topology of (S2)M∗



Finkelstein-Rubinstein quantization

Naive quantization: Ψ : CQ → C. Inherently bosonic

FR quantization: Ψ : C̃Q → C. May be fermionic

Need exchange loop in C2 to be noncontractible and of even
order in π1(C2) (...+ many consistency checks)

~

γ

γ~

C2

C2

Key question: what is π1(C )?
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Hopfions from Skyrmions: the Hopf fibration

π : C2 ⊃ S3 → S2 ≡ CP1, (z1, z2) 7→ [z1 : z2]

Given a Skyrme field U : M → SU(2) = S3, produce a FH
field π ◦ U : M → S2

Our idea: study the map π∗ : (SU(2))M → (S2)M

Why?

(SU(2))S
3

well studied, e.g. π1(C2) = Z2, generated by
exchange. Consistency of FR quantization established (Giulini)
GM is a topological group:

U(x), Ũ(x) 7→ U(x)Ũ(x)

Basic fact: π∗ : (SU(2))M → (S2)M∗ surjects, and B 7→ Q
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Basic fact: π∗ : (SU(2))M → (S2)M∗ surjects, and B 7→ Q



Hopfions from Skyrmions: the Hopf fibration

π : C2 ⊃ S3 → S2 ≡ CP1, (z1, z2) 7→ [z1 : z2]

Given a Skyrme field U : M → SU(2) = S3, produce a FH
field π ◦ U : M → S2

Our idea: study the map π∗ : (SU(2))M → (S2)M

Why?

(SU(2))S
3

well studied, e.g. π1(C2) = Z2, generated by
exchange. Consistency of FR quantization established (Giulini)
GM is a topological group:
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Hopfions from Skyrmions: the Hopf fibration

π : S3 → S2 is a fibration: homotopy lifting property

SX

X S[0,1] 

{0}

x

x
3

2

ι

H

π

f
0

∼

H
∼

holds for all domains X

Prop (JMS, Krusch): π∗ : (S3)M → (S2)M∗ is a Serre
fibration (has homotopy lifting property w.r.t. all disks)

Any Serre fibration F
ι
↪→ E

ρ→ B induces a homotopy long
exact sequence:

· · · → πk(F )
ι∗→ πk(E )

ρ∗→ πk(B)
∂→ πk−1(F )

ι∗→ · · · ρ∗→ π0(B)

Our case: ρ = π∗, E = SU(2)M , B = (S2)M∗ , F = U(1)M
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Hopfions from Skyrmions: the Hopf fibration

· · · → π1(U(1)M)
ι∗→ π1(SU(2)M)

ρ∗→ π1((S
2)M∗ )

∂→ π0(U(1)M)
ι∗→ π0(SU(2)M)→ · · ·

ι∗ ≡ 0 since U(1) contracts in SU(2)

Auckly-Kapitanski:
π0(GM) = H3(M;π3(G ))× H1(M;H1(G ))

Auckly-JMS: π1(GM) = Zs
2 × H2(M;π3(G ))

Corollary (Krusch, JMS): π∗ induces a short exact sequence

0→ π1(SU(2)M)
π∗∗→ π1((S2)M∗ )→ H1(M;Z)→ 0

In particular π∗∗ is an isomorphism if H1(M;Z) = 0 (e.g.
π1(M) is finite)
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Fermionicity

M = S3 ⇒ π1((S2)M∗ ) = π1(SU(2)M) = Z2

Generated by π∗∗(two skyrmion exchange loop) = two hopfion
exchange loop

Recall Ψ : C̃Q → C
Deck transformation Π : C̃Q → C̃Q

Π(p) = p̂ s.t. p ∼ p̂, p 6= p̂

Demand Π∗Ψ = −Ψ, i.e.

Ψ(Π(p)) ≡ −Ψ(p)

Gives odd exchange statistics
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Finkelstein-Rubinstein symmetry constraints

Consider quantum ground state Ψ : C̃Q → C
What are its spin L2, L3 and isospin K3 quantum numbers?

Assume classical energy minimizer ϕ invariant under
simultaneous spatial rotation by α about x3 axis and
isorotation by β about ϕ3 axis. Then

γαβ : [0, 1]→ CQ , [γαβ(t)](x) = R(βt)ϕ(R(αt)x)

is a closed loop in CQ .

Quantum ground state also eigenstate of spin L̂2, L̂3 and
isospin K̂3

Two points p,Π(p) ∈ C̃Q correspond to ϕ ∈ CQ . If γαβ
noncontractible, Ψ(Π(p)) = −Ψ(p), so

(e−iαL̂3e−iβK̂3Ψ)(p) = −Ψ(p)

So either Ψ(p) = 0 (bizarre) or e−i(αL3+βK3) = −1



Finkelstein-Rubinstein symmetry constraints

Classical symmetries predict (iso)spin quantum numbers

Assume L, L3,K3 take lowest values allowed by constraints

|Q| EQ shape symmetry ground state

1 135.2 unknot (1, 1) |12 ,−
1
2 ,

1
2〉

2 220.6 unknot (2, 1) |0, 0, 0〉
3 308.9 unknot C 1

2 |12 ,
1
2 ,

1
2〉

4 385.5 unknot (2, 2) |0, 0, 0〉
5 459.8 link — |12 ,±

1
2 ,

1
2〉

6 521.0 link — |0, 0, 0〉
7 589.0 knot — |12 ,±

1
2 ,

1
2〉



Concluding remarks

Can get quantitative energy spectrum within collective
coordinate approx:
restrict dynamics to symmetry orbit of classical minimizer

Warning: orbit does not have the same π1 as CQ !
2π spatial rotation loop always has order 2 in π1(orbit)
(independent of Q!)
Have to impose FR constraints “by hand”

Genuinely localized hopfions can be consistently fermionically
quantized
⇒ particle-like in this respect, at least

Key to understanding this is algebraic topology of the Hopf
fibration

Commun. Math. Phys. 263 (2006) 173-216
Commun. Math. Phys. 264 (2006) 391-410
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2π spatial rotation loop always has order 2 in π1(orbit)
(independent of Q!)
Have to impose FR constraints “by hand”
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