Fermionic quantization of knot solitons

Martin Speight University of Leeds, UK

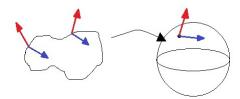
7th December 2012

Joint work with Dave Auckly and Steffen Krusch

 $arphi: M^3
ightarrow S^2, \quad E = \int_M |darphi|^2 + |arphi^*(\omega_{area})|^2$

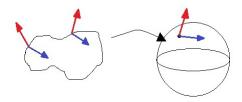
(ロ)、(型)、(E)、(E)、 E) の(の)

 $arphi: M^3 o S^2, \quad E = \int_M |darphi|^2 + |arphi^*(\omega_{area})|^2$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$arphi: M^3
ightarrow S^2, \quad E = \int_M |darphi|^2 + |arphi^*(\omega_{area})|^2$$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $\varphi(\infty) = (0, 0, 1)$
- Framed cobordism class of any regular preimage

• Pontrjagin (1941): homotopy classes of maps $\varphi: M^3 \to S^2$ fall into **families** labelled by

 $\alpha = [\varphi^* \mu_{S^2}] \in H^2(M; \mathbb{Z})$

• Pontrjagin (1941): homotopy classes of maps $\varphi: M^3 \to S^2$ fall into **families** labelled by

$\alpha = [\varphi^* \mu_{S^2}] \in H^2(M; \mathbb{Z})$

Within the α family, classes are labelled by elements of

 $H^{3}(M;\mathbb{Z})/2\alpha \smile H^{1}(M;\mathbb{Z})$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• Notation: Y^X = space of cts maps $(X, x_0) \rightarrow (Y, y_0)$

• Notation: Y^X = space of cts maps $(X, x_0) \rightarrow (Y, y_0)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Algebraically inessential family, $(S^2)^M_* \subset (S^2)^M$:

• $[\varphi^*\mu_{S^2}]=0$

• Notation: Y^X = space of cts maps $(X, x_0) \rightarrow (Y, y_0)$

- Algebraically inessential family, $(S^2)^M_* \subset (S^2)^M$:
 - $[\varphi^* \mu_{S^2}] = 0$
 - classes labelled by $H^3(M; \mathbb{Z}) = \mathbb{Z}$

- Notation: Y^X = space of cts maps $(X, x_0) \rightarrow (Y, y_0)$
- Algebraically inessential family, $(S^2)^M_* \subset (S^2)^M$:
 - $[\varphi^*\mu_{S^2}]=0$
 - classes labelled by $H^3(M; \mathbb{Z}) = \mathbb{Z}$
 - everything if $H^2(M; \mathbb{Z}) = 0$ (e.g. $M = S^3 = \mathbb{R}^3 \cup \{\infty\}$)

- Notation: Y^X = space of cts maps $(X, x_0) \rightarrow (Y, y_0)$
- Algebraically inessential family, $(S^2)^M_* \subset (S^2)^M$:
 - $[\varphi^*\mu_{S^2}]=0$
 - classes labelled by $H^3(M; \mathbb{Z}) = \mathbb{Z}$
 - everything if $H^2(M; \mathbb{Z}) = 0$ (e.g. $M = S^3 = \mathbb{R}^3 \cup \{\infty\}$)
 - integral formula: $\varphi^*(\omega/4\pi) = d\theta$,

$$Q = \int_M heta \wedge d heta \in \mathbb{Z}$$

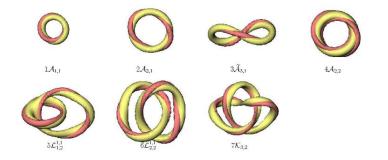
Hopf degree

- Notation: Y^X = space of cts maps $(X, x_0) \rightarrow (Y, y_0)$
- Algebraically inessential family, $(S^2)^M_* \subset (S^2)^M$:
 - $[\varphi^*\mu_{S^2}]=0$
 - classes labelled by $H^3(M; \mathbb{Z}) = \mathbb{Z}$
 - everything if $H^2(M; \mathbb{Z}) = 0$ (e.g. $M = S^3 = \mathbb{R}^3 \cup \{\infty\}$)
 - integral formula: $\varphi^*(\omega/4\pi) = d\theta$,

$$Q = \int_M heta \wedge d heta \in \mathbb{Z}$$

Hopf degree

 Essential maps: φ⁻¹(reg pt) wraps around a nontrivial 1-cycle in *M*. Not localized. Topological geons?



Picture credit: Battye and Sutcliffe

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Spatially localized, but string-like core
- $E \sim Q^{\frac{3}{4}}$ (not $\sim Q$, like skyrmions)
- Can they be quantized as fermions (like skyrmions)?

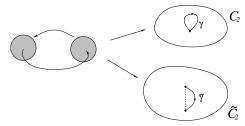
• Question about the topology of $(S^2)^M_*$

• Naive quantization: $\Psi : \mathscr{C}_Q \to \mathbb{C}$. Inherently bosonic

• Naive quantization: $\Psi : \mathscr{C}_Q \to \mathbb{C}$. Inherently bosonic

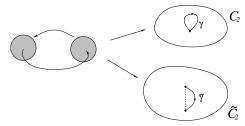
• FR quantization: $\Psi: \widetilde{\mathscr{C}_Q} \to \mathbb{C}$. May be fermionic

- Naive quantization: $\Psi : \mathscr{C}_Q \to \mathbb{C}$. Inherently bosonic
- FR quantization: $\Psi : \widetilde{\mathscr{C}_Q} \to \mathbb{C}$. May be fermionic
- Need exchange loop in *C*₂ to be noncontractible and of even order in π₁(*C*₂) (...+ many consistency checks)



• Key question: what is $\pi_1(\mathscr{C})$?

- Naive quantization: $\Psi : \mathscr{C}_Q \to \mathbb{C}$. Inherently bosonic
- FR quantization: $\Psi : \widetilde{\mathscr{C}_Q} \to \mathbb{C}$. May be fermionic
- Need exchange loop in *C*₂ to be noncontractible and of even order in π₁(*C*₂) (...+ many consistency checks)



• Key question: what is $\pi_1(\mathscr{C})$?

$$\pi: \mathbb{C}^2 \supset S^3 \to S^2 \equiv \mathbb{C}P^1, \qquad (z_1, z_2) \mapsto [z_1: z_2]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\pi: \mathbb{C}^2 \supset S^3 \to S^2 \equiv \mathbb{C}P^1, \qquad (z_1, z_2) \mapsto [z_1: z_2]$$

• Given a Skyrme field $U: M \to SU(2) = S^3$, produce a FH field $\pi \circ U: M \to S^2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\pi: \mathbb{C}^2 \supset S^3 \to S^2 \equiv \mathbb{C}P^1, \qquad (z_1, z_2) \mapsto [z_1: z_2]$$

• Given a Skyrme field $U: M \to SU(2) = S^3$, produce a FH field $\pi \circ U: M \to S^2$

• Our idea: study the map $\pi_*: (SU(2))^M \to (S^2)^M$

$$\pi: \mathbb{C}^2 \supset S^3 \rightarrow S^2 \equiv \mathbb{C}P^1, \qquad (z_1, z_2) \mapsto [z_1: z_2]$$

- Given a Skyrme field $U: M \to SU(2) = S^3$, produce a FH field $\pi \circ U: M \to S^2$
- Our idea: study the map $\pi_*: (SU(2))^M o (S^2)^M$
- Why?
 - (SU(2))^{S³} well studied, e.g. π₁(𝒞₂) = ℤ₂, generated by exchange. Consistency of FR quantization established (Giulini)

$$\pi: \mathbb{C}^2 \supset S^3 \rightarrow S^2 \equiv \mathbb{C}P^1, \qquad (z_1, z_2) \mapsto [z_1: z_2]$$

- Given a Skyrme field $U: M \to SU(2) = S^3$, produce a FH field $\pi \circ U: M \to S^2$
- Our idea: study the map $\pi_*: (SU(2))^M \to (S^2)^M$
- Why?
 - (SU(2))^{S³} well studied, e.g. π₁(𝒞₂) = ℤ₂, generated by exchange. Consistency of FR quantization established (Giulini)
 - *G^M* is a **topological group**:

 $U(x), \widetilde{U}(x) \mapsto U(x)\widetilde{U}(x)$

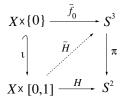
$$\pi: \mathbb{C}^2 \supset S^3 \rightarrow S^2 \equiv \mathbb{C}P^1, \qquad (z_1, z_2) \mapsto [z_1: z_2]$$

- Given a Skyrme field $U: M \to SU(2) = S^3$, produce a FH field $\pi \circ U: M \to S^2$
- Our idea: study the map $\pi_*: (SU(2))^M o (S^2)^M$
- Why?
 - (SU(2))^{S³} well studied, e.g. π₁(𝒞₂) = ℤ₂, generated by exchange. Consistency of FR quantization established (Giulini)
 - *G^M* is a **topological group**:

 $U(x), \widetilde{U}(x) \mapsto U(x)\widetilde{U}(x)$

• Basic fact: $\pi_* : (SU(2))^M \to (S^2)^M_*$ surjects, and $B \mapsto Q$

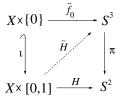
• $\pi: S^3 \to S^2$ is a **fibration**: homotopy lifting property



・ロト・日本・モート モー うへぐ

holds for **all** domains X

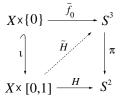
• $\pi: S^3 \to S^2$ is a **fibration**: homotopy lifting property



holds for **all** domains X

Prop (JMS, Krusch): π_{*} : (S³)^M → (S²)^M_{*} is a Serre fibration (has homotopy lifting property w.r.t. all disks)

• $\pi: S^3 \to S^2$ is a **fibration**: homotopy lifting property

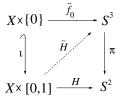


holds for **all** domains X

- Prop (JMS, Krusch): π_{*} : (S³)^M → (S²)^M_{*} is a Serre fibration (has homotopy lifting property w.r.t. all disks)
- Any Serre fibration F → E → B induces a homotopy long exact sequence:

 $\cdots \to \pi_k(F) \xrightarrow{\iota_*} \pi_k(E) \xrightarrow{\rho_*} \pi_k(B) \xrightarrow{\partial} \pi_{k-1}(F) \xrightarrow{\iota_*} \cdots \xrightarrow{\rho_*} \pi_0(B)$

• $\pi: S^3 \to S^2$ is a **fibration**: homotopy lifting property



holds for **all** domains X

- Prop (JMS, Krusch): π_{*} : (S³)^M → (S²)^M_{*} is a Serre fibration (has homotopy lifting property w.r.t. all disks)
- Any Serre fibration F → E → B induces a homotopy long exact sequence:

 $\cdots \to \pi_k(F) \xrightarrow{\iota_*} \pi_k(E) \xrightarrow{\rho_*} \pi_k(B) \xrightarrow{\partial} \pi_{k-1}(F) \xrightarrow{\iota_*} \cdots \xrightarrow{\rho_*} \pi_0(B)$

• Our case: $\rho = \pi_*, E = SU(2)^M, B = (S^2)^M_*, F = U(1)^M$

 $\cdots \to \pi_1(U(1)^M) \stackrel{\iota_*}{\to} \pi_1(SU(2)^M) \stackrel{\rho_*}{\to} \pi_1((S^2)^M_*) \stackrel{\partial}{\to} \pi_0(U(1)^M) \stackrel{\iota_*}{\to} \pi_0(SU(2)^M) \to \cdots$

 $\cdots \to \pi_1(U(1)^M) \stackrel{\iota_*}{\to} \pi_1(SU(2)^M) \stackrel{\rho_*}{\to} \pi_1((S^2)^M_*) \stackrel{\partial}{\to} \pi_0(U(1)^M) \stackrel{\iota_*}{\to} \pi_0(SU(2)^M) \to \cdots$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $\iota_* \equiv 0$ since U(1) contracts in SU(2)

 $\cdots \to \pi_1(U(1)^M) \stackrel{\iota_*}{\to} \pi_1(SU(2)^M) \stackrel{\rho_*}{\to} \pi_1((S^2)^M_*) \stackrel{\partial}{\to} \pi_0(U(1)^M) \stackrel{\iota_*}{\to} 0 \to \cdots$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $\iota_* \equiv 0$ since U(1) contracts in SU(2)

 $\cdots \to \pi_1(U(1)^M) \stackrel{\iota_*}{\to} \pi_1(SU(2)^M) \stackrel{\rho_*}{\to} \pi_1((S^2)^M_*) \stackrel{\partial}{\to} \pi_0(U(1)^M) \stackrel{\iota_*}{\to} 0 \to \cdots$

- $\iota_* \equiv 0$ since U(1) contracts in SU(2)
- Auckly-Kapitanski: $\pi_0(G^M) = H^3(M; \pi_3(G)) \times H^1(M; H_1(G))$

 $\cdots \to \pi_1(U(1)^M) \stackrel{\iota_*}{\to} \pi_1(SU(2)^M) \stackrel{\rho_*}{\to} \pi_1((S^2)^M_*) \stackrel{\partial}{\to} H^1(M; \mathbb{Z}) \stackrel{\iota_*}{\to} 0 \to \cdots$

- $\iota_* \equiv 0$ since U(1) contracts in SU(2)
- Auckly-Kapitanski: $\pi_0(G^M) = H^3(M; \pi_3(G)) \times H^1(M; H_1(G))$

 $\cdots \to \pi_1(U(1)^M) \stackrel{\iota_*}{\to} \pi_1(SU(2)^M) \stackrel{\rho_*}{\to} \pi_1((S^2)^M_*) \stackrel{\partial}{\to} H^1(M; \mathbb{Z}) \stackrel{\iota_*}{\to} 0 \to \cdots$

- $\iota_* \equiv 0$ since U(1) contracts in SU(2)
- Auckly-Kapitanski: $\pi_0(G^M) = H^3(M; \pi_3(G)) \times H^1(M; H_1(G))$
- Auckly-JMS: $\pi_1(G^M) = \mathbb{Z}_2^s \times H^2(M; \pi_3(G))$

 $\cdots \to 0 \stackrel{\iota_*}{\to} \pi_1(SU(2)^M) \stackrel{\rho_*}{\to} \pi_1((S^2)^M_*) \stackrel{\partial}{\to} H^1(M; \mathbb{Z}) \stackrel{\iota_*}{\to} 0 \to \cdots$

- $\iota_* \equiv 0$ since U(1) contracts in SU(2)
- Auckly-Kapitanski: $\pi_0(G^M) = H^3(M; \pi_3(G)) \times H^1(M; H_1(G))$
- Auckly-JMS: $\pi_1(G^M) = \mathbb{Z}_2^s \times H^2(M; \pi_3(G))$
- Corollary (Krusch, JMS): π_* induces a short exact sequence

 $0 \to \pi_1(SU(2)^M) \stackrel{\pi_{**}}{\to} \pi_1((S^2)^M_*) \to H^1(M; \mathbb{Z}) \to 0$

 $\cdots \to 0 \stackrel{\iota_*}{\to} \pi_1(SU(2)^M) \stackrel{\rho_*}{\to} \pi_1((S^2)^M_*) \stackrel{\partial}{\to} H^1(M; \mathbb{Z}) \stackrel{\iota_*}{\to} 0 \to \cdots$

- $\iota_* \equiv 0$ since U(1) contracts in SU(2)
- Auckly-Kapitanski: $\pi_0(G^M) = H^3(M; \pi_3(G)) \times H^1(M; H_1(G))$
- Auckly-JMS: $\pi_1(G^M) = \mathbb{Z}_2^s \times H^2(M; \pi_3(G))$
- Corollary (Krusch, JMS): π_* induces a short exact sequence

 $0 \to \pi_1(SU(2)^M) \stackrel{\pi_{**}}{\to} \pi_1((S^2)^M_*) \to H^1(M; \mathbb{Z}) \to 0$

• In particular π_{**} is an isomorphism if $H^1(M; \mathbb{Z}) = 0$ (e.g. $\pi_1(M)$ is finite)

• $M = S^3 \Rightarrow \pi_1((S^2)^M_*) = \pi_1(SU(2)^M) = \mathbb{Z}_2$

- $M = S^3 \Rightarrow \pi_1((S^2)^M_*) = \pi_1(SU(2)^M) = \mathbb{Z}_2$
- Generated by π_{**} (two skyrmion exchange loop) = two hopfion exchange loop

- $M = S^3 \Rightarrow \pi_1((S^2)^M_*) = \pi_1(SU(2)^M) = \mathbb{Z}_2$
- Generated by π_{**} (two skyrmion exchange loop) = two hopfion exchange loop

• Recall $\Psi : \widetilde{\mathscr{C}}_Q \to \mathbb{C}$

- $M = S^3 \Rightarrow \pi_1((S^2)^M_*) = \pi_1(SU(2)^M) = \mathbb{Z}_2$
- Generated by π_{**} (two skyrmion exchange loop) = two hopfion exchange loop
- Recall $\Psi : \widetilde{\mathscr{C}}_Q \to \mathbb{C}$
- Deck transformation $\Pi : \widetilde{\mathscr{C}}_Q \to \widetilde{\mathscr{C}}_Q$

$$\Pi(p) = \hat{p}$$
 s.t. $p \sim \hat{p}, p \neq \hat{p}$

- $M = S^3 \Rightarrow \pi_1((S^2)^M_*) = \pi_1(SU(2)^M) = \mathbb{Z}_2$
- Generated by π_{**} (two skyrmion exchange loop) = two hopfion exchange loop
- Recall $\Psi : \widetilde{\mathscr{C}}_Q \to \mathbb{C}$
- Deck transformation $\Pi : \widetilde{\mathscr{C}}_Q \to \widetilde{\mathscr{C}}_Q$

$$\Pi(p) = \hat{p}$$
 s.t. $p \sim \hat{p}, p \neq \hat{p}$

• Demand $\Pi^* \Psi = -\Psi$, i.e.

 $\Psi(\Pi(p)) \equiv -\Psi(p)$

Gives odd exchange statistics

Finkelstein-Rubinstein symmetry constraints

- Consider quantum ground state Ψ : C_Q → C
 What are its spin L², L₃ and isospin K₃ quantum numbers?
- Assume classical energy minimizer φ invariant under simultaneous spatial rotation by α about x₃ axis and isorotation by β about φ₃ axis. Then

 $\gamma_{lphaeta}: [0,1] o \mathscr{C}_{\mathcal{Q}}, \qquad [\gamma_{lphaeta}(t)](\mathbf{x}) = R(eta t) \varphi(R(lpha t) \mathbf{x})$

is a closed loop in \mathscr{C}_Q .

- Quantum ground state also eigenstate of spin \hat{L}^2, \hat{L}_3 and isospin \hat{K}_3
- Two points p, Π(p) ∈ C_Q correspond to φ ∈ C_Q. If γ_{αβ} noncontractible, Ψ(Π(p)) = −Ψ(p), so

$$(e^{-ilpha \hat{L}_3}e^{-ieta \hat{K}_3}\Psi)(p) = -\Psi(p)$$

So either $\Psi(p) = 0$ (bizarre) or $e^{-i(\alpha L_3 + \beta K_3)} = -1$

Finkelstein-Rubinstein symmetry constraints

- Classical symmetries predict (iso)spin quantum numbers
- Assume L, L_3, K_3 take lowest values allowed by constraints

<i>Q</i>	E _Q	shape	symmetry	ground state
1	135.2	unknot	(1, 1)	$ rac{1}{2},-rac{1}{2},rac{1}{2} angle$
2	220.6	unknot	(2,1)	0,0,0 angle
3	308.9	unknot	C_{2}^{1}	$ \frac{1}{2},\frac{1}{2},\frac{1}{2}\rangle$
4	385.5	unknot	(2,2)	0,0,0 angle
5	459.8	link	_	$ \frac{1}{2},\pm\frac{1}{2},\frac{1}{2} angle$
6	521.0	link	_	$ \overline{0},0,\overline{0} angle$
7	589.0	knot		$ rac{1}{2},\pmrac{1}{2},rac{1}{2} angle$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Can get quantitative energy spectrum within collective coordinate approx: restrict dynamics to symmetry orbit of classical minimizer

- Can get quantitative energy spectrum within collective coordinate approx: restrict dynamics to symmetry orbit of classical minimizer
- Warning: orbit does not have the same π₁ as C_Q!
 2π spatial rotation loop always has order 2 in π₁(orbit) (independent of Q!)
 Have to impose FR constraints "by hand"

- Can get quantitative energy spectrum within collective coordinate approx: restrict dynamics to symmetry orbit of classical minimizer
- Warning: orbit does not have the same π₁ as *C*_Q!
 2π spatial rotation loop always has order 2 in π₁(orbit) (independent of Q!)
 Have to impose FR constraints "by hand"
- Genuinely localized hopfions can be consistently fermionically quantized

 \Rightarrow particle-like in this respect, at least

- Can get quantitative energy spectrum within collective coordinate approx: restrict dynamics to symmetry orbit of classical minimizer
- Warning: orbit does not have the same π₁ as *C*_Q!
 2π spatial rotation loop always has order 2 in π₁(orbit) (independent of Q!)
 Have to impose FR constraints "by hand"
- Genuinely localized hopfions can be consistently fermionically quantized
 - \Rightarrow particle-like in this respect, at least
- Key to understanding this is algebraic topology of the Hopf fibration

Commun. Math. Phys. **263** (2006) 173-216 Commun. Math. Phys. **264** (2006) 391-410

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Chair/Associate Professorship in Geometry

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Postdoc on Skyrmions (numerics)