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Rough plan

� Monday

– Session 1: Lecture “Kinks”

– Session 2: Lecture “Lagrangian field theory”

– Session 3: Lecture “Higher dimensions”

– Session 4: Problems class

� Tuesday

– Session 5: Lecture “Lumps”

– Session 6: Lecture “The geodesic approximation”

Exercises for session 4

1. Show that any field theory with Lagrangian density of the form L(φt, φx, φ) conserves
momentum

P = −
∫ ∞
−∞

∂L
∂φt

φxdx.

Verify that this reproduces the claimed conserved momentum for the sine-Gordon
model.

2. Consider the φ4 model:

L =
1

2
(φ2
t − φ2

x)− 1

2
(1− φ2)2.

(a) Compute its conserved energy E.

(b) Show that any static field φ : R→ R with kink boundary conditions (limx→±∞ φ(x) =
±1) has E ≥ 4

3 . Construct all static fields that attain this bound. (Hint: repeat
the Bogomol’nyi trick.)
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3. Consider

n(φ) =
1

4π

∫
R2

φ · (φx × φy)dxdy

as a functional of the field φ : R2 → S2. Show that this is a topological invariant of
φ. That is, show that, for any smooth variation φs of φ = φ0 of compact support,

dn(φs)

ds

∣∣∣∣
s=0

= 0.

4. Let φ : R2 → S2 be a finite energy static solution of the field theory with static energy
functional

E(φ) =

∫
R2

{
1

2
(|φx|2 + |φy|2) +

1

4
|φx × φy|2 + (1− φ3)

}
dxdy.

Such solutions are called baby Skyrmions. Show that∫
R2

|φx|2dxdy =

∫
R2

|φy|2dxdy

and ∫
R2

1

4
|φx × φy|2dxdy =

∫
R2

(1− φ3)dxdy.

(Hint: The second should come from Derrick’s scaling argument. Can you modify
this argument to get the first?)

Solutions

1. For an aribtrary field φ : R1,1 → R consider the variation of φ generating spatial
translations

φs(t, x) = φ(t, x− s).

Then Lφs(t, x) = Lφ(t, x− s), since L does not depend on x. Hence

∂s|s=0Lφs = −∂xLφ. (1)

But Lφs(t, x) = L(φs,t(t, x), φs,x(t, x), φs(t, x)), so

∂s|s=0Lφs =
∂L
∂φt

∂s|s=0φs,t +
∂L
∂φx

∂s|s=0φs,x +
∂L
∂φ

∂s|s=0φs

= − ∂L
∂φt

φxt −
∂L
∂φx

φxx −
∂L
∂φ

φx

= −∂t
(
∂L
∂φt

φx

)
+ ∂t

(
∂L
∂φt

)
φx − ∂x

(
∂L
∂φx

φx

)
+ ∂x

(
∂L
∂φx

)
φx −

∂L
∂φ

φx

= −φx
(
∂t

(
∂L
∂φt

)
+ ∂x

(
∂L
∂φx

)
+
∂L
∂φ

)
− ∂t

(
∂L
∂φt

φx

)
− ∂x

(
∂L
∂φx

φx

)
.

(2)
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Hence, if φ is a solution of the field theory (so satisfies the Euler-Lagrange equation),

∂s|s=0Lφs = −∂t
(
∂L
∂φt

φx

)
− ∂x

(
∂L
∂φx

φx

)
. (3)

Equating (1) and (3), we see that, for all solutions φ(t, x),

∂tJ
0 + ∂xJ

1 = 0

where

J0 = − ∂L
∂φt

φx

J1 = − ∂L
∂φx

φx + Lφ.

It follows that

P (t) =

∫ ∞
−∞

J0(t, x)dx = −
∫ ∞
−∞

∂L
∂φt

φxdx

is a conserved quantity, since

dP

dt
= −

∫ ∞
−∞

∂xJ
1dx = J1(−∞)− J1(∞) = 0

if we assume sensible boundary conditions.

In the case of the sine-Gordon model,

L =
1

2
phi2t −

1

2
φ2
x − (1− cosφ)

so

P = −
∫ ∞
−∞

φtφxdx

as claimed in Lecture 1.

2. (a) Using the formula from Lecture 2,

E =

∫ ∞
−∞

(
∂L
∂φt

φt − Lφ
)
dx =

1

2

∫ ∞
−∞

(
φ2
t + φ2

x + (1− φ2)2
)
dx.

(b) Assume now that φ : R→ R is a static field with boundary values φ(±∞) = ±1.
Then

0 ≤ 1

2

∫
R

(
φx − (1− φ2)

)2
dx

= E(φ)−
∫
R
φx(1− φ2)dx

= E(φ)−
[
φ(x)− φ(x)3

3

]∞
−∞

= E(φ)− 4

3
.
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Hence, E(φ) ≥ 4
3 , with equality if and only if

φx = (1− φ2)

whose general solution is φ(x) = tanh(x− x0).

3. Let φs be a smooth variation of φ = φ0 with compact support Ω ⊂ R2 (meaning that,
for all (x, y) /∈ Ω, φs(x, y) = φ(xy) for all s), and denote by ε : R2 → R3

ε(x, y) = ∂sφs(x, y)|s=0.

Note that ε = 0 outside Ω and on ∂Ω, and that, for all (x, y) ∈ R2,

ε(x, y) · φ(x, y) = 0,

that is, ε(x, y) ∈ Tφ(x,y)S
2. (This follows by differentiating the identity |φs(x, y)|2 = 1

with respect to s.)

Consider the corresponding variation of n:

dn(φs)

ds

∣∣∣∣
s=0

=

∫
Ω

(ε · (φx × φy) + φ · (εx × φy) + φ · (φx × εy)) dxdy.

Note that φx, φy, ε are all in the two-dimensional space orthogonal to φ, so the first
term vanishes identically (it is the determinant of the 3 × 3 matrix whose rows are
those 3 vectors, which must be linearly dependent). To handle the second and third
terms, we pull our usual trick:

dn(φs)

ds

∣∣∣∣
s=0

=

∫
Ω

(
∂x(φ · (ε× φy))− φx · (ε× φy)− φ · (ε× φxy)

+∂y(φ · (φx × ε))− φy · (φx × ε)− φ · (φxy × ε)
)
dxdy.

The second and fifth terms vanish identically (since φx, φy, ε are all in the plane
orthogonal to φ), and the sixth cancels the third. Hence

dn(φs)

ds

∣∣∣∣
s=0

=

∫
Ω

(
∂x(φ · (ε× φy)) + ∂y(φ · (φx × ε)

)
dxdy

=

∫
∂Ω

A · ds

the flux of the vector field

A = (φ · (ε× φy), φ · (φx × ε))

through the boundary ∂Ω. But ε vanishes on ∂Ω, so A = 0 on ∂Ω, and hence

dn(φs)

ds

∣∣∣∣
s=0

= 0.

Since this hold for all variations, n is a topological invariant of the field φ.
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4. Define the terms

E0(φ) =

∫
R2

(1− φ3)dxdy

E2(φ) =
1

2

∫
R2

(|φx|2 + |φy|2)dxdy

E4(φ) =
1

2

∫
R2

|φx × φy|2dxdy

so that E = E2 + E4 + E0. (The subscript denotes the degree of the integrand
regarded as a polynomial in the spatial derivatives φx, φy.) Consider the behaviour of
these functionals under the scaling variation

φλ(x, y) = φ(λxλy).

E0(φλ) =

∫
R2

(1− φ3(λxλy))dxdy = λ−2E0(φ)

E2(φ) =
1

2

∫
R2

λ2(|φx(λx, λy)|2 + |φy(λx, λy)|2)dxdy = E2(φ)

E4(φ) =
1

2

∫
R2

λ4|φx(λx, λy)× φy(λx, λy)|2dxdy = λ2E4(φ)

where, in each case the final equality follows from changing to rescaled coordinates
(x′, y′) = (λx, λy) in the integral. So

E(φλ) = E2(φ) + λ2E4(φ) + λ−2E0(φ).

Since φ is a static solution, E is stationary with respect to all variations of φ, including
this scaling variation, so

dE(φλ)

dλ

∣∣∣∣
λ=1

= 0,

whence we see that 2E4(φ)− 2E0(φ) = 0, the second claimed identity.

To get the first claimed identity, we use instead the variation

φλ(x, y) = φ(λx, λ−1y).

E0(φλ) =

∫
R2

(1− φ3(λx, λ−1y))dxdy = E0(φ)

E2(φ) =
1

2

∫
R2

(λ2|φx(λx, λ−1y)|2 + λ−2|φy(λx, λ−1y)|2)dxdy

=
λ2

2

∫
R2

|φx|2dxdy +
λ−2

2

∫
R2

|φy|2dxdy

E4(φ) =
1

2

∫
R2

|λφx(λx, λ−1y)× λ−1φy(λx, λ
−1y)|2dxdy = E4(φ)
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where, in each case the final equality follows from changing to rescaled coordinates
(x′, y′) = (λx, λ−1y) in the integral. (Note that this coordinate transformation is area
preserving, that is, dx′dy′ = dxdy). Again, E must be stationary with respect to this
variation, so

0 =
dE(φλ)

dλ

∣∣∣∣
λ=1

=

∫
R2

|φx|2dxdy −
∫
R2

|φy|2dxdy.

Take home exercises

1. Compute n(φ), the degree of the map φ : R2 → S2,

φ(r, θ) = (sin f(r) cos kθ, sinf(r) sin kθ, cos f(r)),

where f : [0,∞)→ R is a strictly decreasing function with f(0) = π and limr→∞ f(r) =
0 and k is an integer. We are using plane polar coordinates here (i.e. (x, y) =
r(cos θ, sin θ)).

The obvious strategy is to compute the integral formula for n. This is straightfor-
ward if you’re familiar with some basic ideas about differential forms, but gets quite
laborious if not. A much easier strategy is to count signed preimages. If you’re really
keen, compute it both ways and check you get the same answer.

2. Assign to each point (φ1, φ2, φ3) ∈ S2 the stereographic coordinate

w =
φ1 + iφ2

1 + φ3
.

(a) Compute the stereographic coordinates of (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0),
(0, 0, 1), (0, 0,−1), and mark these coordinates on a diagram of the sphere.

(b) Show that

φ =
(2Rew, 2Imw, 1− |w|2)

1 + |w|2
.

(c) Show that the Polyakov equation

φx + φ× φy = 0

rewritten in coordinates z = x+ iy on R2 and w on S2 is

∂w

∂z̄
= 0,

the Cauchy Riemann equation.

3. Let φ : R2 → S2 be the general 1-lump solution, that is, in stereographic coordinates

w(z) =
a1

z + b1
, (a1, b1) ∈ (C× × C.

Show that the energy density

E(x, y) =
1

2
(|φx|2 + |φy|2)

of this solution is a lump centred at z = −b1 with width ∼ |a1|.
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4. Describe E for the “coincident” 2-lump

w(z) =
a2

z2
.

Is it just a bigger lump centred at z = 0?

5. Let φ be a 1-lump, that is

w(z) =
q1 + iq2

z + q3 + iq4

for some (q1, q2, q3, q4). Try to compute the metric coefficient g11. What goes wrong?

6. Construct the most general n-lump

w(z) =
a1z

n−1 + a2z
n−2 + · · ·+ an

zn + b1zn−1 + · · ·+ bn

invariant under all rotations

w(z) 7→ α−nw(αz), α ∈ C, |α| = 1.

You should find that the space of all such n-lumps forms a submanifold of Mn dif-
feomorphic to C×. Compute the induced metric g on this submanifold. Analyze its
geodesic flow.

Further reading

1. N.S. Manton and P.M. Sutcliffe, Topological Solitons, Cambridge University Press,
2004. The bible of the subject.

2. Yisong Yang, Solitons in Field Theory and Nonlinear Analysis, Springer, 2001. Rig-
orously develops the underlying mathematical analysis.

3. M. Nakahara, Geometry, Topology and Physics, Taylor Francis, 1990. A nice intro-
duction to pretty much all the differential geometry and topology used in theoretical
physics.

4. N.S. Manton, “Solitons as elementary particles: a paradigm scrutinized,” Nonlinearity
21 (2008) T221. A critical appraisal of the idea that elementary particles might really
be topological solitons.
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